Algebra Preliminary Exam, May 1995

- 1. Prove that every group of order 80 has a proper, normal subgroup.
- 2. Suppose the alternating group A_5 operates (i.e., acts) on a set S. Prove that no element of S has an orbit of order 2.
- 3. Let R be a commutative local ring with identity. Let m be the maximal ideal of R and let M be a finitely generated R-module. Prove that if M/mM is an n-dimensional vector space over the field R/m, then M can be generated by n elements.
- 4. Let $\xi_{13} = e^{\frac{2\pi}{13}} \in \mathbb{C}$ (so ξ_{13} is a primitive 13th root of unity). Let $\omega = \xi_{13} + \xi_{13}^5 + \xi_{13}^8 + \xi_{13}^{12}$.
 - (a) Find the subgroup H of the Galois group $\operatorname{Gal}(\mathbb{Q}(\xi_{13})/\mathbb{Q})$ corresponding to $\mathbb{Q}(\omega)$ in the Galois correspondence and prove your answer carefully.
 - (b) Explain why Q(ω) is a Galois extension of Q and describe Gal(Q(ω)/Q) (include the order of Gal(Q(ω)/Q) in your description).
- 5. Let $f(x), g(x) \in \mathbb{Q}[x]$ be irreducible polynomials (over \mathbb{Q}) and let $\alpha, \beta \in \mathbb{C}$ such that $f(\alpha) = 0$, $g(\beta) = 0$. Prove that if g(x) is irreducible over $\mathbb{Q}(\alpha)$, then f(x) is irreducible over $\mathbb{Q}(\beta)$.
- 6. Let A, B be $n \times n$ symmetric matrices with entries in the real numbers. Prove that if AB = BA then there is an invertible matrix $n \times n$ matrix M such that MAM^{-1} and MBM^{-1} are both diagonal matrices.
- 7. Describe, in as much detail as possible, all the finitely generated, projective Z-modules and prove your answer.
- 8. Let p be a prime number and let m, n be positive integers. Let \mathbb{F}_{p^m} denote the finite field of order p^m . Prove that the polynomial $x^n 1$ has exactly n distinct roots in \mathbb{F}_{p^m} if and only if $p^m \equiv 1 \pmod{n}$. (Hint: consider the group $\mathbb{F}_{p^m}^{\times}$ of nonzero elements of \mathbb{F}_{p^m} under multiplication.)
- 9. For each of the following, either give an example or state that is none.
 - (a) A PID (principal ideal domain) that is not a UFD (unique factorization domain).
 - (b) A UFD that is not a PID.
 - (c) A commutative ring R, an R-module M and an exact sequence of R-modules $0 \to A \to B$ such that $0 \to A \otimes M \to B \otimes M$ is not exact.
 - (d) A non-abelian group of order p^2 where p is a prime number.