Algebra Preliminary Exam

Tuesday, March 31, 1998

Do as many problems as you can. Problem 1 is worth 25 point, the others are worth 10 points each. The number of problems done <u>completely</u> will also be taken into account: one correct problem is better than two half-done problems.

 \mathbb{Z}, \mathbb{Q} , and \mathbb{C} denote the integers, the rational numbers, and the complex numbers, respectively.

- 1. (a) Explain why there is a natural one-to-one correspondence between maximal ideals of $\mathbb{C}[x]$ and the elements of \mathbb{C} .
 - (b) Let R be a ring. Prove that if I is an ideal of R and $I \neq R$, then I is contained in a maximal ideal of R.
 - (c) Give an example of a commutative ring R, an R-module M, and an exact sequence of R-modules $0 \to A \to B$ such that $0 \to A \otimes M \to B \otimes M$ is not exact.
 - (d) Suppose A is a hermitian (self-adjoint) matrix over the complex numbers. Prove that there is a matrix B such that $A = B^2$.
 - (e) Identify the Z-module $\mathbb{Z}[(1+\sqrt{5})/2]/\mathbb{Z}[\sqrt{5}]$ as a standard finitely generated module over the PID Z.
- 2. Let R be a commutative ring with 1. Let P be a prime ideal of R. Prove that if there are ideals I_1, I_2, \ldots, I_n , such that $P = I_1 \cap I_2 \cap \ldots \cap I_n$, then $P = I_j$ for some j.
- 3. Let p be a prime and let n be a natural number. Let $GF(p^n)$ denote the field of order p^n . Prove that the group of automorphisms of $GF(p^n)$ is cyclic of order n.
- 4. Suppose that G is a group of order 18. Prove that either G is abelian, or G is isomorphic to the dihedral group D_9 , or G is generated by three elements a, b, c, such that

 $a^3 = b^3 = c^2 = 1$, ab = ba and $cac^{-1} = a^q b^r$, $cbc^{-1} = a^s b^t$, where $\begin{bmatrix} q & r \\ s & t \end{bmatrix}$ is in $\operatorname{GL}_2(\mathbb{Z}/3\mathbb{Z})$

and has order 2. (If you have time at the end of the test: how many non-isomorphic groups of the latter type are there?)

5. Find a set of matrices over the complex numbers such that any matrix (over \mathbb{C}) whose characteristic polynomial equals $(x-2)^3$ is similar (conjugate) to one and only one matrix in your set. Prove your answer.

- 6. (a) Find the order of the group $SL_2(\mathbb{Z}/7\mathbb{Z})$ and prove your answer.
 - (b) How many Sylow 7-subgroups does $SL_2(\mathbb{Z}/7\mathbb{Z})$ have? Find one explicitly.
- 7. Let $\alpha \in \mathbb{C}$ be a root of $x^3 + 2x + 2$.
 - (a) Prove that $\mathbb{Q}[\alpha]$ is a field.
 - (b) Find $(\alpha^2 + 1)^{-1}$ as a polynomial in α .
- 8. Let p be an odd prime. Let F be splitting field of $x^p 1$ over \mathbb{Q} . Prove that there is a unique field K between \mathbb{Q} and F which is of degree 2 over \mathbb{Q} . Describe this field explicitly when p = 5.