According to university policy, “A student with three final examinations scheduled within a twenty-four (24) hour period* or two examinations at the same time may petition to reschedule one exam to a different time or day. If one of the conflicting final examinations is a mass exam, it should be rescheduled first.”

*The twenty-four (24) hour period begins at the start time of the first exam.

To accommodate those students with three or more exams scheduled during a 24-hour period, there will be a makeup exam for MATH 2250 on Wednesday, May 8, from 6 p.m. to 9 p.m. Please contact your instructor to arrange to take the makeup exam. Students are only allowed to take the makeup exam because of the university policy above or due to an emergency (with supporting documentation).

Definitions and Theorems to State:
- The (limit) definition of the derivative of $f(x)$
- The definition of continuity at $x = a$

Theorems to Use but not State (if you use one, say you are using it):
- The Extreme Value Theorem (Closed Interval Method)
- First derivative test for local extrema
- L’Hopital’s rule
- The relationship of continuity to differentiability
- Second derivative test for local extrema
- Fundamental Theorems of Calculus (Part 1 and Part 2)
- Intermediate Value Theorem

Properties you will be responsible for:
- Properties of logarithmic and exponential functions
- Other precalculus-level formulas (in addition to those listed below)

Limits:
- Be able to find the limits and one-sided limits of functions (even if not continuous), both analytically and graphically
- Find limits that approach infinity or have an infinite limit
- Determine horizontal asymptotes and vertical asymptotes of a function; justify your answer using one or more limits
- Be able to use L’Hopital’s Rule to find limits (and identify and state the appropriate indeterminate forms that allow you to do so)
- Applications of continuity, including the Intermediate Value Theorem
- Verify continuity (analytically and graphically)
- Determine intervals on which a function is continuous
- Be able to “repair” a removable discontinuity by (re)defining the function at that x-value
- Determine the value of a parameter that makes a piecewise function continuous where the two pieces meet

Derivatives:
- Be able to find the derivative $f'(x)$ from the limit definition of the derivative
- Be able to use rules to find the derivative; know all rules from back of book through inverse trig function (no hyperbolic or parametric, no $\text{arccsc}(x)$, $\text{arccot}(x)$, or $\text{arccsc}(x)$)
- Implicit differentiation
- Be able to compute derivatives at specific points using limited information (e.g. a table)
- Be able to find an equation of the tangent line at a point
- Be able to understand/interpret the slope of a function
- Logarithmic differentiation

Proof-based Problems:
- Use differentiation of the appropriate inverse function to verify the differentiation rule for $\ln(x)$
- Use differentiation of the appropriate inverse function to verify the differentiation rule for $\text{arcsin}(x)$, $\text{arccos}(x)$, and $\text{arctan}(x)$ (including an appropriate right triangle diagram or a Pythagorean identity)

Applications of Derivatives
- Applications involving a tangent line
- Be able to find and use the linearization
- Be able to find and use the differential
- Position, displacement, velocity, acceleration problems
- Interpret the derivative as a rate of change in a wide range of contexts
- Related rates
- Understand the relationship between (first and second) derivatives and curve behavior; curve sketching from derivative information
- Determine all extrema of a function on a closed interval
- Applied optimization (open and/or closed interval); justify that you have a max or min

Integration
- Antiderivatives: most general antiderivative as well as initial value problems
- Understand the definite integral as (signed) area
- Apply properties of the definite integral
- Be able to use the definite integral to compute and interpret
 - signed area
 - total area
 - area between two curves
 - average value of a function
- Estimate a definite integral using well-chosen sums with a small number of rectangles (left, right, midpoint), and interpret your answer
- Express a right endpoint Riemann sum with N rectangles of equal width in summation form, using only the summation symbol, k, N, and numbers
- Compute a definite integral:
 - by interpreting it as area
 - by Evaluation Theorem (FTC 2)
 - by integration via substitution

Terminology to be familiar with (in addition to terminology listed in sections above):
- average rate of change/secant slope, average velocity
- instantaneous rate of change/tangent slope
- average value of a function
- tangent lines and linearization of a function at a point
- domain
- critical points (critical numbers), inflection points
- increasing, decreasing, concave up, concave down
- local (relative) extrema
- absolute (relative) extrema

Penalties (approximately 20% of problem’s points value for each issue):
- Improper use of $+C$ or missing $+C$
- Improper use of limit notation
- Improper use of integral or sigma
- Improper use of “=” (like $y = x^3 = 3x^2$)
- Improper algebraic notation (missing parentheses, incorrect variable name, etc.)

Remarks for students:
- Problems may combine multiple topics/techniques.
- You do not have to simplify your answers.
- Calculator TI 30XS Multiview only! No other calculators are allowed, and sharing of calculators is not allowed.
- Final answers are preferred in symbolic form (like $\sqrt{3}$ or e^2) but a FINAL decimal approximation must be correct to 3 decimal places.
- You will leave your backpacks at the front of the room; a backpack that rings or buzzes will be taken out to the hallway and left there.
- No smart watches are allowed during the exam; your cell phone may not be on your person and must be stored in a backpack, purse, or other storage item left at the front of the classroom.
Formulas to Remember

- Distance between \((x_1, y_1)\) and \((x_2, y_2)\):
 \[d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\]

- Triangles and Trig
 - perimeter (add up side lengths)
 - area: \(A = \frac{1}{2}bh\)
 - Be able to use properties of similar triangles.
 - Pythagorean Theorem for right triangles: \(a^2 + b^2 = c^2\)
 - right triangles and acute angle trig: SOH-CAH-TOA

 \[
 \begin{array}{c|c|c|c}
 \tan(x) & \frac{\sin(x)}{\cos(x)} & \cot(x) & \frac{\cos(x)}{\sin(x)} \\
 \csc(x) & \frac{1}{\sin(x)} & \sec(x) & \frac{1}{\cos(x)} \\
 \end{array}
 \]

 - \(\sin^2(x) + \cos^2(x) = 1\)
 - Your trig differentiation formulas assume that your angle is in radians. (Why?)

- Circles
 - area: \(A = \pi r^2\)
 - circumference: \(C = 2\pi r\)
 - Equation of the circle of radius \(r\) centered at \((h,k)\):
 \[(x - h)^2 + (y - k)^2 = r^2\]

- Rectangles
 - area: \(A = lw\)
 - perimeter: \(P = 2l + 2w\)

- Cylinder
 - volume: \(V = \pi r^2 h\)
 - surface area: \(S = 2\pi r^2 + 2\pi rh\) (includes base and lid)

- Rectangular prisms
 - volume: \(V = lwh\)
 - surface area: \(S = 2lw + 2 lh + 2wh\) (includes top and base)