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Abstract
It is well known in the literature that human behavior can change as a reaction to
disease observed in others, and that such behavioral changes can be an important
factor in the spread of an epidemic. It has been noted that human behavioral traits
in disease avoidance are under selection in the presence of infectious diseases. Here,
we explore a complementary trend: the pathogen itself might experience a force of
selection to become less “visible,” or less “symptomatic,” in the presence of such
human behavioral trends. Using a stochastic SIR agent-based model, we investigated
the co-evolution of two viral strains with cross-immunity, where the resident strain is
symptomatic while the mutant strain is asymptomatic. We assumed that individuals
exercised self-regulated social distancing (SD) behavior if one of their neighbors was
infected with a symptomatic strain. We observed that the proportion of asymptomatic
carriers increased over time with a stronger effect corresponding to higher levels of
self-regulated SD. Adding mandated SD made the effect more significant, while the
existence of a time-delay between the onset of infection and the change of behav-
ior reduced the advantage of the asymptomatic strain. These results were consistent
under random geometric networks, scale-free networks, and a synthetic network that
represented the social behavior of the residents of New Orleans.
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1 Introduction

Epidemic spread of infectious diseases is a topic that has received much attention
among computational modelers, see, e.g., Ma and Xia (2009), Diekmann et al. (2012),
Siettos and Russo (2013), Heesterbeek et al. (2015), Cobey (2020). One important
aspect of this process is the rise and spread of mutant variants of the pathogen (Feng
et al. 2006; Day et al. 2011; Poletto et al. 2013, 2015; Griette et al. 2015; Gandon et al.
2016). For example, in a spatially expanding epidemic, it was shown that less virulent
strains will dominate the periphery while more virulent strains will prevail at the core
(Osnas et al. 2015). It has also been observed that in epidemic models where infec-
tion events happen on an interaction network, evolutionary dynamics of the pathogen
change depending on the structure of the network (Newman 2005;Karrer andNewman
2011; Bansal and Meyers 2012; Miller 2013). It has been shown, for example, that
heterogeneities in contact structure (i.e., network degree) may accelerate the spread
of a single disease, and at the same time slow down the rise of a rare advantageous
mutation under susceptible–infected–susceptible (SIS) infection dynamics (Leventhal
et al. 2015). In the context of spatial networks with host migration, it was reported that
the spatial network structure may have important effects on the transient evolutionary
dynamics during an epidemic (Lion and Gandon 2016); in particular, the front and the
rear of the expanding epidemic are expected to be phenotypically different. Pinotti et al.
(2019) studied the influence of the social network structure on competition dynamics
of strains (with identical parameters) that are spread via a stochastic SIS model on the
network. It was found that network structure can affect the ecology of pathogens: in a
more heterogeneous network (a network with a high standard deviation for its degree
distribution), a reduction in the number of strains and an increase in the dominance
of one strain were observed, while strong community structure (a set of nodes in a
network, which are strongly connected to each other, have few or no connection with
nodes out of the set) in the social network increased the strain diversity.

Another relevant characteristic of epidemic dynamics that has been investigated is
the effect of human behavior on disease spread, see, e.g., Funk et al. (2010), Eksin et al.
(2017), Eksin et al. (2019), Weitz et al. (2020). Different aspects of human behavior
have been considered, including relational exchange (e.g., replacement of sick indi-
viduals by healthy ones in the workplace) (Scarpino et al. 2016), people’s hygiene
(Fewtrell et al. 2005), voluntary vaccination and vaccination compliance (Bauch and
Earn 2004), “risky” versus “careful” individual behavior (Del Valle et al. 2005; Tanaka
et al. 2002; Epstein et al. 2008; Gross et al. 2006; Funk et al. 2009), and the related
concept of social distancing. Social distancing is a change of behavior that can roughly
be classified into (1) self-regulated (or spontaneous) where individuals may choose to
limit their contacts based on information that they receive or on their personal beliefs
(Ariful Kabir et al. 2019; Kan and Zhang 2017; Funk et al. 2009; Sun et al. 2011;
Wang et al. 2015; Wu et al. 2012); and (2) mandated (public), where the decrease in
social contacts is regulated centrally and affects either the entire population or certain
subpopulations (Glass et al. 2006; Valdez et al. 2012). The COVID-19 pandemic has
triggered much research into the role of social distancing in viral spread, especially
because before the advance of vaccination, non-pharmaceutical intervention (NPI)
measures were the only intervention available (Lewnard and Lo 2020). NPI policies
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have taken a variety of forms such as extreme lockdowns, school closures, road and
transit systems restrictions, and mandatory isolation/quarantine (Kupferschmidt and
Cohen 2020), see, e.g., Feng et al. (2020), Vokó and Pitter (2020), Chowdhury et al.
(2020), Kissler et al. (2020), Ferguson et al. (2020), Koo et al. (2020), Hellewell et al.
(2020), Gatto et al. (2020), Wang et al. (2020), Liu et al. (2020), Li et al. (2020) on
the effects of mandated social distancing on SARS-CoV-2 spread. In a recent paper
Huang et al. (2021), the authors considered the combination of bothmandated and self-
regulated types of social distancing, and studied their effect on the outbreak threshold
of an (asymptomatic) infectious disease.

In this paper,we explore the role ofmandated and self-regulated social distancing on
viral evolution. The focus of this study is the co-evolution of two types of a pathogen:
the resident, more symptomatic, pathogen, and an emerging, less symptomatic (or
asymptomatic), variant. The two may or may not differ in their infectivity properties,
but because they present differently, they will trigger different behavior by individuals,
which may result in different levels of self-regulated social distancing. As a result,
the less symptomatic variant may experience a selective advantage. We will use the
usual framework of the susceptible–infectious–removed (SIR)model on networks, and
investigate how the network structure (including random networks of different types
and a synthetic network representing social interactions of real individuals) modifies
the co-dynamics of the two viral strains.

2 Methods

The agent-based model (ABM) describes the infection transmission dynamics and
intervention strategies. It is assumed that the disease spreads within a susceptible–
infected–removed (SIR) framework. Dynamics take place on a network, and three
different network types are studied.

2.1 Network Structure

We assume that the epidemic spreads on a network of size N , where each node rep-
resents a person, and the edges represent interactions. Here, we study two types of
random, unweighted networks: the random geometric network, and the scale-free net-
work (each with N = 10,000 nodes). Each of these networks represents a different
type of abstraction that retains certain features of human interactions. In addition to
these two theoretical random networks, we studied disease spread on a real-world syn-
thetic network of a much larger size (N = 150,000), where the edges are weighted by
the time the two individuals spend together. This synthetic network was constructed
based on interaction data of people in New Orleans (Eubank et al. 2010, 2008).

Random Spatial-Geometric Network This network is constructed by placing N
points in a unit square and connecting only the points that are within a prescribed
Euclidean distance, r , from each other. Such networks are characterized by strong
local structure and clustering properties, and have been studied extensively (Dall and
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Christensen 2002; Lang et al. 2018). Such networks could represent local social con-
tacts of individuals in the absence of any long-range connections.

Scale-Free Network This network is characterized by a power law degree distribu-
tion. As a result, while most individuals only have a limited number of contacts, there
are “super-spreaders” with very high degrees (Barabási and Bonabeau 2003; Barabási
and Albert 1999). Examples of applications of such networks are the number of sex-
ual partners in a college environment (Crawford 1990) or the network of a city with
buildings (nodes) and flows of people as connecting edges (Chowell et al. 2003).

We use Networkx open software platform (Hagberg et al. 2004) to generate spatial-
geometric randomnetworks in dimension2with a distance threshold r = 0.02.Wealso
use the Barabási–Albert preferential attachment model in Networkx to generate scale-
free networks with degree distribution P(k) ∼ k−2.11. The random networks have the
same size and average degree, but they differ in terms of their degree distributions and
other properties, since they have different structures.

Each of these networks has advantages and disadvantages when used to model epi-
demic spread in populations. Random spatial-geometric networks successfully model
the clustering properties of human interactions but do not include long-range connec-
tions or super-spreaders. Super-spreaders are a natural part of scale-free networks, but
the latter network type has no clustering or neighborhood structure. For these rea-
sons, we perform all the analyses for different network types, to investigate whether
observed phenomena depend on any particular network properties. Finally, we imple-
ment themost realistic network in the study, theNewOrleans synthetic network, which
is described below.

Real-WorldNetwork Our real-world network is based on the synthetic data generated
by Simfrastructure (Eubank et al. 2010, 2008) for N = 150,000 synthetic people
residing in New Orleans. This network is generated by sampling the real-world data
of New Orleans individual activity and contacts. The network statistically reflects the
demographics of New Orleans and the social connections of the city’s population.
Simfrastructure is a high-performance, service-oriented, agent-based modeling and
simulation system for representing and analyzing interdependent infrastructures. In
the New Orleans network, each edge i j between two nodes i and j is weighted by ωi j ,
which represents the strength of connectivity between i and j , and reflects the type of
connection as well as the amount of time the two individuals spend with each other.

2.2 SIR Model on a Network for TwoVirus Strains

In our stochastic SIR agent-based model (ABM), an individual i at time t is either sus-
ceptible to being infected, infected, or removed from the infection because of recovery
or death. During a time-interval�t , an infected individual can infect any of its suscep-
tible neighbors (that is, susceptible individuals connected with the infected individual
by an edge). We denote by β the infection rate per edge, such that during time �t ,
the probability that a susceptible individual j will be infected by an infected neighbor
i is given by βωi j�t . (Note that for the random spatial and scale-free networks, we

123



Effect of Human Behavior on the Evolution... Page 5 of 33 144

will use ωi j = 1). For each infected individual, a recovery event occurs during the
time-interval �t with probability γ�t , or a death event occurs with probability δ�t ,
and we refer to the rate of death or recovery as the rate of removal, ρ = γ + δ.

We assume the existence of two distinct variants (strains) of the virus, which we
denote by V1 and V2. Our model incorporates permanent cross-immunity for either
viruses, that is, if an individual is infected by virus k, then the individual is immune
to virus k′ for k′ �= k during infection and after recovery (here k, k′ ∈ {1, 2}). We
further assume that an individual infected with virus k can only induce infection with
virus k, that is, we do not consider spontaneous mutations from one type of virus to
the other.

Unless noted otherwise, the two virus strains are assumed to have identical parame-
ters, that is, the same values of β, δ, and γ . The only difference between the two strains
is that one (V1) causes a symptomatic disease, while the other (V2) is asymptomatic.
This variation in expression gives rise to differences in people’s behavior, as described
in the next subsection. Later on, we consider scenarios in which symptomatic infection
is coupled to a higher viral infectivity.

For initialization, we start the epidemic by randomly infecting one individual with
V1. We then advance the simulation until the epidemic grows to 0.1% V1-infected
individuals. At this time, we introduce the next randomly generated newly infected
case as a V2 infection; this represents a single mutation event of the resident strain.

At this point, we reset the time to zero and use this state as the initial condition to
study the virus co-dynamics in the absence of any further mutant generation.

Simulation speed depends on the time-step size �t , so it is desirable to pick the
largest value for�t such that the simulations exhibit reasonable convergence accuracy,
see also Roche et al. (2011). We have implemented the program for the null scenario
(no social distancing) with �t values representing 1 day, 1 h, and 1 min, and while
results differed significantly between �t = 1 day and �t = 1 h, the result for �t = 1
h and �t = 1 min was almost identical. Therefore, we chose �t = 1 h for our
simulations in this study.

2.3 Social Distancing Strategies

We model two types of social distancing (SD) strategies: (1) mandated SD imple-
mented by the government, and (2) self-regulated SD.

Mandated SD is implemented as follows: When the prevalence of virus (i.e., the
fraction of infected individuals among the population) reaches a fixed threshold ψ , all
individuals start practicing temporary social distancing. To this end, a fraction σM of
all the edges in the network is removed for τM consecutive days; connections to be
removed are chosen randomly.

Self-regulated SD is also implemented only if the number of infections has reached
the threshold prevalence ψ . If an individual has at least one neighbor that is symp-
tomatically infected with V1 (after a delay τs following infection), the individual
removes a fraction σS of his/her connections. The connections to be removed are
chosen randomly, and remain cut for as long as there is a symptomatically infected
neighbor.
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Table 1 Parameter and state variable definitions and notations

Notation Description Unit

N Number of nodes in the network People

Network Spatial network –

Parameters Scale-free random network –

Real-world network –

ωi j The connectivity level between two
neighbors i and j

1

C̄ Average number of contact per time
for random networks

Contact/time

βk Prob. of transmission per contact per
time for individuals contacting
viral strain Vk

1/contact

Infection ρ Per time removal (death or recovery)
probability from virus k

1/time

Parameters τs Time period between infection and
development of symptoms for
individuals infected with viral
strain V1

Time

ψ Prevalence threshold: Infection
prevalence to start SD

1

Intervention σM Mandated SD: fraction of removed
contacts

1

Parameters σS Self-regulated SD against V1:
fraction of removed contacts

1

τM Duration of mandated SD Time

Here, SD stands for social distancing

It is possible that the fraction σS or σM of connections is a non-integer number, K .
In this case, if [K ] stands for the integer part of K, [K ] + 1 connections are removed
with probability K − [K ], and [K ] connections are removed otherwise.

2.4 Parameter Values

The definitions of all the variables and parameters of the proposed model are given in
Table 1. The parameter values have been chosen to be realistic for respiratory infections
and are specified in the figure legends. Under these parameters, the basic reproduction
number is between 2 and 3 for the examples considered.

To estimate the basic reproduction number R0, starting with a randomly selected
individual as the initial infected case, we count the number of neighbors who are
subsequently infected by the focal individual during the infectious period. We repeat
this process for a large number of independent simulations, seeding each one with a
different initially infected individual.

Intervention parameters will change based on different scenarios explored here,
and are specified in figure legends.
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3 Results: Positive Selection of the Asymptomatic Strain on Different
Networks

Here, we explore the consequences of behavioral changes (self-regulated social dis-
tancing) on the spread of an asymptomatic viral strain. This is first done by using two
types of abstract random networks, the scale-free and the random spatial network.
Both types of random networks have some features resembling different aspects of
human social networks. Then, we show how similar scenarios play out on a more
realistic network that emulates the behavior of a real-life population of New Orleans.

3.1 Self-Regulated Social Distancing Selects for an Asymptomatic Strain

In our model, individuals in the population exercise self-regulated SD if members of
their circle become symptomatically infected (that is, become infected with V1). To
explore the consequence of this behavior on the evolutionary dynamics of asymp-
tomatic virus variants (V2), we ran simulations where such a mutant was introduced as
a minority in the initial stages of the epidemic, see Fig. 1. We explored the dynamics
on two different networks: scale-free (left panels) and spatial (right panels); the trajec-
tories and the error bars are averages and standard deviations over 5000 independent
simulations. We present four different degrees of self-regulated SD: σS = 0 (a control
case where V2 is indistinguishable from V1 in the model, and no selection is expected),
σS = 0.2 (low-degree self-regulated SD), σS = 0.4 (moderate self-regulated SD), and
σS = 0.7 (high-degree self-regulated SD). As time goes by and the epidemic spreads,
we plot the prevalence of each virus (panels (1a) and (1b)), and also follow the relative
share of V2, that is

V2
V1+V2

(panels (1c) and (1d)).
In the absenceof self-regulatedSD (black lines in panels (1a) and (1b)), the epidemic

on the two networks looks different despite similar R0 parameters: infection burns
through the scale-free network faster and reaches a higher infection peak, while in the
case of the spatial network it lasts longer at relatively low levels.

Under zero self-regulated SD (black lines in panels (1c) and (1d)), as expected,
the proportion of V2 remains approximately constant throughout the course of the
epidemic, although we do observe an initial increase in the abundance of V2 in the
spatial network. This initial increase is due to a somewhat “advantageous” initial
location of the V2 infection. In the spatial network, the individuals initially infected
with V2 are placed on the “outskirts” of the growing infected neighborhood, which
results in a larger mean number of uninfected neighbors that V2-infected individuals
have compared to V1-infected individuals. This initial increase of the proportion of V2
is therefore due to the initial placement and does not represent an ongoing selection.

A different pattern is observed in the presence of self-regulated SD: the proportion
of V2 infected individuals increaseswell beyond the initial boost. This effect is stronger
for a larger extent of self-regulated SD (compare green (σS = 0.7) to red (σS = 0.4)
to blue (σS = 0.2) lines in the bottom panels of Fig. 1). The exact extent to which
the fraction of V2 increases in the course of the epidemic depends, besides σS , on the
network size and type. Larger networks will result in a larger increase in V2 fraction,
simply because they experience a larger and longer epidemic, and V2 will have a longer
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a b

c d

Fig. 1 (Color figure online) The role of self-regulated SD in the spread of viruses. Time series are shown for
four scenarios: No (σS = 0, black), low (σS = 0.2, blue), moderate (σS = 0.4, red), and high (σS = 0.7,
green) self-regulated SD, and in the absence of mandated SD. Scale-free (left) and spatial (right) networks
of 10,000 individuals with average degree 10 are used. a, b The prevalence of V1 (solid) and V2 (dashed);
c, d the proportion of V2 (V2/(V1 +V2)). The remaining parameters are γ + δ = 0.1 per day, ψ = 0.0012,
β1 = β2 = 0.028 per day per contact for the scale-free and β1 = β2 = 0.037 per day per contact for the
spatial network (corresponding to R0 = 2.5). Means and standard errors are shown for 5000 stochastic
realizations

time to gain on V1 before the epidemic runs out of targets (not shown); a similar result
can be demonstrated by using anODEmodel of an SIR infectionwith two viral strains,
see “Appendix 1.”

We note a significant difference in the amount of gain experienced by the
asymptomatic strain under scale-free (panel (c)) and spatial (panel (d)) networks. Self-
regulated SD results in much more effective protection on a spatial network, because
if an individual has an infected neighbor, the first individual is likely to have more
than one infected neighbor, and self-regulated SD induced by one of the neighbors
will work against future infections in the vicinity. This spatial inhibition results in a
much larger force of selection experienced by the asymptomatic strain on a spatial net-
work, compared to the case of scale-free network, which does not have a community
structure. More details are presented in “Appendix 2.”
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a b

Fig. 2 (Color figure online) Selection for V2 in the presence of a fitness cost. Time series of proportion
of V2 under moderate self-regulated SD, σS = 0.4 (and with σM = 0), are shown for 0% fitness cost
(β2 = β1, black), 5% fitness cost (β2 = 0.95β1, blue), 10% fitness cost (β2 = 0.9β1, red), and 15% fitness
cost (β2 = 0.85β1, green), for a scale-free and b spatial networks. All the other parameters are as in Fig. 1

3.2 AdvantageMediated by Self-Regulated SD Can Offset a Fitness Cost of the
Asymptomatic Strain

Figure2 explores a scenario where the asymptomatic mutant, V2, has a fitness cost
compared to the resident virus, V1, which is manifested through a reduction in the
probability of transmission parameter. We can see that although having a small disad-
vantage in β2 reduces the fraction of V2, we still observe a rise in the prevalence of V2
caused by self-regulated SD against symptomatic cases. In other words, the behavior-
based selection mechanism can work even in the presence of a degree of disadvantage
in the transmissibility of the mutant compared to the resident type. We observe that
even in the presence of a significant fitness disadvantage for virus V2, self-regulated
SD can provide enough pressure to lead to positive selection of the asymptomatic
virus.

Again, we note a difference in the force of selection for the asymptomatic strain
under scale-free and spatial networks. In the case of a scale-free network, (Fig. 2a) a
15% disadvantage of V2 almost completely eliminates any advantage gained through
self-regulated SD. In the case of a spatial network (Fig. 2b), an asymptomatic strain
with a 15% fitness costs still rises to almost 90% in the population.

3.3 Mandated Social DistancingMakes Selection Stronger

Next, we explored the consequence of mandated SD implementation on the selection
for the asymptomatic strain. Mandated SD affects transmission of both viral strains
equally, and it is not immediately clear whether the presence ofmandated SD canmod-
ify the dynamics and change the advantage experienced by V2 through self-regulated
SD. Figure3 assumes the presence of self-regulated SD at an intermediate level, and
shows that increasing the level of mandated SD increases the positive selection pres-
sure experienced by the asymptomatic strain.
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a b

Fig. 3 (Color figure online) The effect of mandated SD on the proportion of V2. The proportion of the
asymptomatic strain, V2, is shown as a function time, for three different levels of mandated SD: a Scale-
free network, σM = 0 (black), σM = 0.2 (blue), and σM = 0.4, with σS = 0.4; b spatial network, σM = 0
(black), σM = 0.2 (blue), and σM = 0.3 (red), with σS = 0.2. All the other parameters are as in Fig. 1.
The levels for mandated and self-regulated SD are selected in such a way thatR0 remains above one so an
outbreak for V1 is observed

To explain some of the patterns observed in our ABM network model, we will
turn to SIR models based on ordinary differential equations (ODEs). Such models
are an important tool in epidemiological infection studies (Anderson and May 1992),
and they have been widely used for various emerging infections such as COVID-19
(Fang et al. 2020). Here, we denote by x the fraction of susceptible individuals, and
distinguish between two strains of infection, V1 and V2. The fraction of individuals
infected with V1 is denoted by y1 and the fraction of individuals infected with V2 is
denoted by y2. We assume that an individual cannot be superinfected with a different
virus, and that recovered individuals have permanent immunity. These assumptions
give rise to the following system:

ẋ = −x(β1y1 + β2y2), (1a)

ẏ1 = xβ1y1 − γ y1 = �1y1 (1b)

ẏ2 = xβ2y2 − γ y2 = �2y2, (1c)

where �1 = β1x − γ and �2 = β2x − γ, and with initial conditions

x(0) = x0, y1(0) = y10, y2(0) = y20.

Here β1 and β2 are the rate of infection for the two strains, and γ the rate of removal.
Let us denote by z the proportion of the individuals infected with V2:

z = y2
y1 + y2

.
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This quantity satisfies the following equation:

ż = z(1 − z)(�2 − �1) = z(1 − z)(β2 − β1)x . (2)

In particular, if the two strains are neutral to each other (β1 = β2) then the fraction z
is expected to stay constant. It will increase if β2 > β1 and decrease if β2 < β1. In
the presence of self-regulated and mandated SD of strengths σS and σM , respectively,
we can express the infectivity of the two viral strains as

β1 = (1 − σM )(1 − σS)β, β2 = (1 − σM )β > β1,

with which Eq. (2) becomes

ż = z(1 − z)σS(1 − σM )βx . (3)

To investigate how the dynamics of z change with the degree of mandated SD, we
note that the only σM -dependent part of the right-hand side of Eq. (3) is the product
(1 − σM )x . Initially, x ≈ x0, and this quantity decays with σM , that is, we expect
that the proportion of the mutant infection grows more slowly under higher degrees
of mandated SD. This behavior is indeed what we observe initially in Fig. 3 (other
instances of this behavior appear in Figs. 7b and 12b in the appendix). As the epidemic
progresses, the number of susceptible individuals (x) decreases, but the amount of
decrease depends on the level of mandated SD: the value of x will be higher for higher
σM and lower for lower σM . As a result, the dynamics of z is under the influence
of two competing factors: (1) the infectivity is lower for higher values of σM , and
(2) the population of susceptibles is higher for higher values of σM . Both numerical
simulations (“Appendix 1”) and analytical calculations in the limit of a large time
separation of the two infections (“Appendix 1”) show that the overall tendency for the
quantity (1 − σM )x is to increase with σM .

Further patterns of wild-type and mutant virus co-dynamics are investigated in the
Appendix. In particular, “Appendix 2” discusses differences in the behavior exhib-
ited by network models compared to ODEs, and “Appendix 4” explores parameter
dependence of the mutant fraction, as well as the final epidemic size of the two viral
strains.

3.4 The Effect of Time-Lag on V2-Selection

All the simulations shown so far assumed that self-regulated SD behavior was
triggered in an individual as soon as a V1-infected individual became infectious; i.e.,
there is no pre-symptomatic infection period and the infection status is known instantly.
In reality, however, there could be a delay between a neighbor’s infection and a change
in response behavior, caused by a delayed onset of symptoms, delayed testing, or a lag
in information spread. Figure4 explores the scenario where a number of days passes
between an infection event and the time when self-regulated SD starts.

We can see that a delay reduces positive selection experienced by the asymptomatic
strain. Under scale-free networks, for the parameters in Fig. 4, in the presence of a
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a b

Fig. 4 (Color figure online) The effect of delay of self-regulated SD on selection of V2. The proportion of
V2 is shown as time series for the a scale-free and b spatial network, in the presence of time delay in the
appearance of symptoms when infected by V1. The different colors correspond to time delays of 0, 1, . . .,
5 days. Here, σS = 0.4, σM = 0.0, and the rest of the parameters are as in Fig. 1

5-day lag, the non-delay scenario increase in the fraction of V2 is almost completely
eliminated. Again, because the positive selection for V2 is much stronger under spatial
networks, we still observe a significant rise in the fraction of V2 in panel (b) even in
the presence of a 5-day delay in symptom onset.

3.5 Co-dynamics of Strains on the NewOrleans Social Network

Thus farwehave investigated the co-dynamics of viral strains on two randomnetworks,
scale-free and spatial. Both reflect different features of human interaction networks,
but possess many very different mathematical properties. All of the major results were
consistent across both networks. As the next step, we will use a real-world network to
demonstrate that the same trends continue to hold there.

The synthetic network thatwe employherewas constructed to statisticallymatch the
demographics of New Orleans residents, based on the 2009 census data. Of approxi-
mately 400,000 residents living in 190,000 households, the synthetic network’s sample
contains 150,000 individuals. These individuals comprise the set of network nodes,
and the edges represent contacts of synthetic individuals through various activity types,
such as “home,” “work,” “school,” and “shopping.” The network statistically reflects
the social connections of the city’s population. Each edge of the network is labeled
with one of the activity types and contains information on the amount of time spent
on these contacts per day, resulting in a weighted network (Eubank et al. 2010, 2008).
We assumed that the amount of contact time necessary to cause an infection event
is 15 min (or 0.01 of day, which is based on COVID-19 data Keeling et al. (2020));
therefore, we removed all edges with weight less than 0.01. The resulting network has
average degree 15.82 and average clustering coefficient 0.32. The degree distribution
of this synthetic network is shown in Fig. 5. To further parameterize the model, we
chose the same removal probability ρ as in the random networks studied above, and
adjusted the probability of transmission to obtain R0 = 2.5.
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Fig. 5 (Color figure online) Degree distribution of the New Orleans synthetic network. Red: the basic
network; black: the network under school closure (see “Appendix 3”). The network includes 150,000 nodes
and has average degree 15.82 (with average degree 12.67 under school closure)

a b

Fig. 6 (Color figure online) New Orleans Network of size 150,000 individuals: the role of self-regulated
SD in the spread of viruses. Time series are shown for four scenarios of no (σS = 0, black), low (σS = 0.2,
blue), moderate (σS = 0.4, red), and high (σS = 0.7, green) self-regulated SD, in the absence of mandated
SD. a plot is the prevalence of V1 (solid) and V2 (dashed); b shows the proportion of V2 (V2/(V1 + V2)).
β1 = β2 = 0.2 and all the other parameters are as in Fig. 1 (corresponding to R0 = 2.5). Means and
standard errors are shown for 1000 stochastic realizations

Figure6 presents the time series of prevalence of the two viruses and the proportion
of V2 under different levels of self-regulated SDs, in the absence of mandated SD.
As established with the two types of random networks, the presence of self-regulated
SD confers selective advantage to the asymptomatic virus strain, V2. We observe that
self-regulated SD at level σS = 0.4 reduces the peak of the symptomatic strain, V1, to
less than half, and at level σS = 0.7 it reduces the peak of V1 by about a factor of 10,
while the impact on the peak of V2 is much more modest. The proportion of V2 in the
right panel of Fig. 6 increases to a peak, and this effect is stronger for higher levels
of self-regulated SD. These results are consistent with those obtained for the random
networks.
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a b

Fig. 7 (Color figure online) New Orleans Network of size 150,000 individuals: the role of mandated SD
in the spread of viruses. Time series are shown for four scenarios of no (σM = 0, black), low (σM = 0.2,
blue), moderate (σM = 0.4, red), and high (σM = 0.6, green) mandated SD, in the presence of moderate
self-regulated SD (σS = 0.4). a plot is the prevalence of V1 (solid) and V2 (dashed); b shows the proportion
of V2 (V2/(V1 + V2)). β1 = β2 = 0.2 and all the other parameters are as in Fig. 1 (corresponding to
R0 = 2.5). Means and standard errors are shown for 1000 stochastic realizations

Figure7 explores the effect of mandated SD in the presence of an intermediate-level
self-regulated SD, σS = 0.4. Again, the results are consistent with those observed for
random networks. Increasing the level of mandated SD can make the selection for V2
significantly stronger.

4 Discussion

It has been reported in the literature that human behavior can change as a reaction
to disease observed in others, see, e.g., Andersson-Ellström et al. (1996), Darrow
(1997), Hays (2005), Curtis (2014), Azizi et al. (2020), Komarova et al. (2021). It
has further been emphasized that such behavioral changes can be an important factor
in epidemic spread, e.g., in the context of sexually transmitted diseases (Hadeler and
Castillo-Chávez 1995; Hyman and Li 1997), or more generally (Funk et al. 2010;
Eksin et al. 2017, 2019; Weitz et al. 2020). It has been noted that human behavioral
traits in disease avoidance are under selection in the presence of infectious diseases
(Tanaka et al. 2002). Here, we explore a complementary trend: the pathogen itself
might experience a force of selection to become less “visible,” or less “symptomatic,”
in the presence of such human behavioral trends.

We used a discrete-time stochastic network model to investigate the spread of two
co-circulating virus strains, one of which (V1) is symptomatic and the other (V2)
asymptomatic. The resident strain (V1) is assumed to give rise to a mutant strain (V2)
sometime during the epidemic. Three types of networks are studied: scale-free and
spatial random networks, and a real-world synthetic network statistically describing
social activity of individuals in New Orleans. We implemented two types of social
distancing, self-regulated SD and mandated SD. Under mandated social distancing,
individuals cut a given fraction of their contacts randomly, while in self-regulated

123



Effect of Human Behavior on the Evolution... Page 15 of 33 144

social distancing, individuals opt to protect themselves based on the infection status
of their contacts. More precisely, individuals cut some of their connections randomly
if they find a symptomatically infected individual among their contacts.

We observed that in the presence of self-regulated protection against symptomatic
cases (self-regulated SD), the proportion of asymptomatic carriers increased over time
with a stronger effect corresponding to higher levels of self-regulated SD.Addingman-
dated SD made the effect even more significant: the proportion of V2 increased for a
longer duration of time and reached a higher maximum in the presence of mandated
SD. Interestingly, the intensity of these trends was higher for the spatial (more homo-
geneous and clustered) network compared with the scale-free network, which was a
result of more local infection spread and community structure. When the simulations
were repeated for the real-world social network based on the New Orleans data, the
selection effect was more similar to that observed for the scale-free than for the spatial
network.

The selection effects observed could be weakened, e.g., by the existence of an
inherent fitness disadvantage of V2 (as a result, for example, of a lower infectivity of
this strain), or by a time delay that exists between the onset of infection V1 and the
change of behavior triggered under self-regulated SD. Nonetheless, we have shown
that even in the presence of these factors the selective advantage of the asymptomatic
strain resulting from human behavior can still be significant and lead to a noticeable
shift in the prevalence of this virus type.

While our model suggests that cautious human behavior can select for a virus
variant that is less symptomatic, this selection pressure can in principle also lead
to more complex outcomes. A similar advantage would be gained if the onset of
symptoms was delayed and if the host could transmit the virus during this prolonged
pre-symptomatic phase. Such a virus variantwould also evade the behavioral reduction
of network connections, yet this variant does not have to be less symptomatic or be
less pathogenic. This property might be at work to some extent with the SARS-CoV-2
delta variant, which is characterized by a longer window between testing positive and
developing symptoms compared to previous variants (Kang et al. 2021). Although
the delta variant appears to produce higher viral loads than previous variants (Li et al.
2021),which alone can lead to a significant transmission advantage, the longer duration
of an infectious pre-symptomatic phase of delta can lead to a strong amplification of
this advantage if people adjust their behavior solely in response to symptomatic social
contacts. This mechanism might be an important contributor to the rapid rise of the
delta variant across the globe.

The model presented here is a simplification of reality. Modeling human behavior
is challenging, and here we ignored many complexities by, for example, assuming that
individuals remove connections probabilistically when learning of a symptomatically
infected individual among their circle of contacts. This approach does not distinguish
between prolonged contacts with friends and brief contacts such as encounters in a
supermarket. It also ignores demographic and socioeconomic factors that may alter
the extent to which individuals can adopt new behaviors to avoid getting infected. In
addition, a static network of contacts has been assumed while in reality individuals
may not have the same contacts every time unit.

123



144 Page 16 of 33 A. Azizi et al.

Despite these uncertainties, our analysis shows robustly that human behavior in
response to an infection outbreak can modulate the evolutionary trajectory of the
virus. In particular, a cautious reaction of people to personal contacts that display
symptomatic disease can promote the emergence of virus strains that induce less
symptomatic disease, and we have argued that the delta variant of SARS-CoV-2 arose
from this mechanism.While we have not modeled one particular infection, the model-
ing approach is geared to describing generic respiratory infections that are transmitted
through casual social contact, and therefore has implications for the current SARS-
CoV-2 pandemic.

Funding This research was supported through the MIDAS Coordination Center (MIDASUGP2020-2) by
a grant from the National Institute of General Medical Science (3U24GM132013-02S2), and NSF DMS
1662146/1662096.

Appendix A: The Effect of Mandated Social Distancing: An ODEModel

We can use ODE modeling of the type (1–1c) to explore the effect of mandated SD
on the dynamics of the asymptomatic strain.

Let us consider the problem where V2 is an advantageous mutant (β2 > β1), which
is initially in a minority, that is, y20 � y10. From the equation for the mutant fraction,
see (2), we note that in this case, z will be an increasing function of time. Its initial
growth is exponential with the rate approximately given by β2 − β1 (assuming that
x ≈ x0 ≈ 1). As x decreases, the growth slows down. Two extreme scenarios can be
distinguished, see Fig. 8:

(1) z approaches 1 well before x decreases significantly; in this case the dynamics of
z is well described by the logistic growth model.

(2) The epidemic endswell before z approaches 1, inwhich case near the epidemic end,
the growth of z becomes linear with the rate approximately given by (β2 −β1)x∞,
where 1 − x∞ is the final epidemic size.

We observe that larger overall values of R0 corresponds to a more modest expansion
of the advantageous virus V2 (assuming that the % advantage is fixed; it is for example
10% in Fig. 8).
In this context, it is useful to calculate the value

x∞ ≡ lim
t→∞ x(t).

If β2 = β1, then we have the following final size relation:

x∞ = e− β1
γ

(1−x∞)
,

which is an implicit formula for x∞. In the case of two different pathogens, if we
denote R0 = max{β1

γ
,

β2
γ

}, we have Arino et al. (2007)

ln
x(0)

x∞
= R0

x(0)
(x(0) − x∞) + β1

γ
y1(0) + β2

γ
y2(0).
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Fig. 8 Fraction of an advantageous virus, V2. a The quantity z(t) obtained by solving Eqs. (1–1c) is plotted
as a function of time for several values of R0, obtained by changing the death rate, a. b The corresponding
susceptible populations as functions of time. The rest of the parameters are β1 = 0.1, β2 = 0.11, y1(0) =
0.001, y2(0) = 0.1y1(0)

TheODEmodel can be used to calculate the proportion ofV2 by the endof epidemic.
Figure9 shows an example where we fixed the values β1 and β2, such that V2 has
a 10% advantage in terms of infectivity, and also assumed that y2(0) = 0.1y1(0).
Parameters γ and y1(0) were varied over a wide range, which corresponds to varying
R0 (associated with the resident virus) and the total population size relative to the
initial number of infected individuals. Panel (a) illustrates the way we numerically
calculate the end of epidemic time, tend , and panel (b) shows the fraction of V2 at time
tend as a function of R0 and log10 y1(0).

We observe that typically, increasingR0 leads to a smaller final fraction of V2. For
relatively large R0 values, the fraction of susceptible individuals decreases quickly
leading to an extremely slow linear growth of the fraction z(t). On the other hand,
decreasing y1(0) (which is equivalent to considering larger total populations) leads to
an increase in the final fraction of V2. Larger populations result in a longer epidemic,
and V2 consequently has a longer time to gain on V1.

Appendix B: The Case of Time Separation BetweenWild-Type and
Mutant Infections

In the ODE model, the dynamics of the mutant fraction, z, is described by Eqs. (2) or
(3). The dependence on σM in the right-hand side of this equation is through the term
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Fig. 9 (Color figure online) Fraction of V2 at the end of the epidemic. aCalculation of tend , which represents
the end of the epidemic, is illustrated. The blue line is the fraction of susceptible individuals, x(t), obtained as
a solution of Eqs. (1–1c); tend = 2t1, where t1 corresponds to x(t1) = 1

2 (x(0)+x∞). In otherwords, at time
t1 the population of susceptible individuals reaches halfway to its final value, x∞. b Quantity y2/(y1 + y2)
obtained by solving Eqs. (1–1c), is plotted at time tend , as a function of the initial proportion of individuals
infected with V1, andR0. The rest of the parameters are β1 = 0.1, β2 = 0.11, y2(0) = 0.1y1(0)

F = β1x = (1 − σM )x . (4)

In “Appendix 1,” we showed numerically that as σM increases (which is equivalent of
β1 decreasing), F increased, resulting in an enhanced growth of advantageousmutants.
In this section, we will prove this result in a special case of a time-separated epidemic.

Figure10a shows an example of a system that experiences two epidemic peaks, an
early one in terms of y1(t) (the wild type epidemic) and then a later one in terms of
y2(t) (the mutant epidemic). This happens in this particular ODE model because the
initial conditions for y1(0) and y2(0) satisfy y2(0) � y1(0), that is, at time t = 0, the
abundance of the mutant is significantly lower than that of the wild type. In this case,
first the wild type infection experiences a peak of y1(t), which is then followed by a
second, delayed peak of a mutant infection. In a sense, the fact that the mutant strain
is introduced at a relatively low level compared to the wild type strain causes a delay
of the epidemic caused by the mutant virus.

To gain understanding of the dynamics, we can study a simplified system that
exhibits a similar behavior. Figure10b shows a scenario where the mutant strain is
introduced after the wild type strain has already burned through the population. Sup-
pose the wild type strain satisfies the usual system,

ẋ1 = −β1x1y1,

ẏ1 = β1x1y1 − γ y1,

ż1 = γ y1,
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Fig. 10 Illustration of time-separated epidemics. a Numerical solution of system (1–1c) with initial
conditions y10 = 0.01, y20 = 10−8, x0 = 1 − y10 − y20, where the mutant infection is characterized by
an initial condition much lower than that of the wild type. The three populations are plotted as a function
of time. The dashed lines show the system behavior in the absence of the mutant, and in particular, the
quantity x̄1 is shown. b Numerical solutions of system (5–5) with y1(0) = 0.01 for t ∈ [0, T ] and system
(8–10) with y2(T ) = 0.01 for t > T . The other parameters are β1 = 0.13, β2 = 2β1, γ = 0.1, T = 200

and the initial conditions are given by x1(0) = x0, y1(0) = y0, z1(0) = 0. The final
epidemic size,

z̄1 ≡ lim
t→∞ z1(t),

is given by Harko et al. (2014), Komarova et al. (2021)

z̄1 = − γ

β1
ln u, (5)

where u is the solution of

ln u = β1

γ
(x0u − 1), 0 < u < 1. (6)

The fraction of susceptible individuals left by the first epidemic is then given by

x̄1 ≡ lim
t→∞ x1(t) = 1 − z̄1. (7)

Note that x̄1 is a decreasing function of β1 (the higher the infectivity, the fewer sus-
ceptibles are left). The second epidemic can then be described by the system

ẋ2 = −β2x2y2, (8)

ẏ2 = β2x2y2 − γ y2 ≡ �y2, (9)

ż2 = γ y2, (10)

with the initial conditions imposed at some time T after the first wave of the epidemic
has passed: x2(T ) = x̄1, y2(T ) = ε, z2(T ) = z̄1 − ε. The growth rate for the infected
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individuals y2 in Eq. (9) is given by

� ≡ x2β2 − γ ≈ x̄1β2 − γ = 1

1 − σS
x̄1β1 − γ.

Note that this growth rate is positive only if the advantageof the virus (factor 1/(1−σS))
is sufficiently high. would like to investigate the dependence of the quantity � on the
mandated distancing, which enters the expressions through β1 = (1−σM )β. To assess
the sign of the dependence, it is enough to consider the function F defined in (4), and
in the current setting can be approximated as

F = x̄1β1.

We can see that while x̄ decreases with β1, it is not immediately clear whether the
product increases or decreases. From Eqs. (5) and (7),

x̄1 = 1 + γ

β1
ln u,

and we have

dF

dβ1
= 1 + γ

u

du

dβ1
. (11)

Differentiating Eq. (6) respect to β1 and resolving for du/dβ1, we obtain

du

dβ1
= u(1 − x0u)

β1x0u − γ
.

Using this in (11), we obtain

dF

dβ1
= − (r − 1)x0u

1 − r x0u
, (12)

where

r = β1

γ
.

First let us show that

1 − r x0u > 0 ⇔ u <
1

r x0
. (13)

To get an upper bound on u, we will use a well-known inequality, (u − 1)/u < ln u,

which, when substituted into (6), gives

u − 1

u
< r(x0u − 1).
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For u < 1 this is equivalent to

u <
r + 1 − √

(r + 1)2 − 4r x0
2r x0

.

On the other hand, we have

r + 1 − √
(r + 1)2 − 4r x0
2r x0

<
1

r x0
⇔ r + 1 −

√
(r + 1)2 − 4r x0 < 2 ⇔ 0 < 4r(1 − x0),

where the last inequality follows from the fact that x0 is the initial fractionof susceptible
individuals. Therefore, we conclude that inequality (13) holds.

To determine the sign of the derivative in (12), we notice that r x0 > 1 (this is the
condition for the first epidemic to take off), and x0 < 1. Therefore, r > 1, and together
with inequality (13), we obtain from (12) that

dF

dβ1
< 0.

In other words, the growth rate of the mutant virus, �, decreases with β1. This
means that as mandated SD, σM , increases, this leads to a decrease in β1, which in
turn causes � to increase. Thus, ma

ndated SD increases the growth rate of a delayed, advantageous infection.

Appendix C: Further Details of Viral Co-Dynamics

In Fig. 1, as well as others (such as Figs. 3, 2), we observe that the fraction of V2
often has a one-humped shape: it first increases to a peak and then decreases as the
epidemic dwindles down. This is a phenomenon that does not have an analogy in the
simple ODE model, (1–1c). Equation (2) for the fraction suggests that the proportion
of V2 always increases if β2 > β1. On the other hand, in the agent-based models for
symptomatic virus V1 and its asymptomatic counterpart, V2, we observe that, both for
scale-free and spatial networks, the numerical gain of V2 eventually decreases. This is
related to the epidemic duration of the two strands: the advantageous virus experiences
a shorter epidemic, and this effect increases with the amount of advantage. Figure11
shows that the time it take V2 to reach its infection peak is shorter compared to that for
V1, and as we increase the level of self-regulated SD (thus increasing the advantage of
V2), the difference in the peak time grows. Therefore, there is a time-interval during
which the amount of V2 infection already decreases while V1 still grows toward its
peak, resulting in a reduction in the V2 fraction.

Note that this is not observed in the ODE system and also was less pronounced in
more clustered spatial network. InODEmodel, the peak of infection yi is reachedwhen
ẏi = 0, which corresponds to the time ti when x = γ

βi
, for i ∈ {1, 2}. Since x(t) is a

decreasing function and β2 > β1 (in analogy with self-regulated SD), we necessarily
conclude that t2 > t1, that is, the epidemic corresponding to a more infectious type is
always longer.
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Fig. 11 (Color figure online) Time to reach infection peak for viruses V1 (blue) and V2 (red), as a function
of σS (the measure of V2 advantage)

Appendix D: Co-Dynamics of Strains on NewOrleans Social network
Under School Closure

School closure is an important component of social distancingmeasures, which has for
example been implemented widely during the SARS-CoV-2 pandemic. Therefore, we
have repeated the analysis of Sect. 3.5 after removing all the edges related to “school.”
Degree distribution of the resulting network is shown in black in Fig. 5. We tuned up
the transmission rates β1 and β2 to have R0 = 2.5 and reran our simulations on the
new network, see Figs. 12 and 13.

In Fig. 12, we implemented the impact of various levels for self-regulated SD (σS =
0, 0.2, 0.4, and 0.7) in the absence of mandated SD (σM = 0). Similar to previous
results, increasing the level of self-regulated SD causes more selective advantage to
the asymptomatic virus strain, V2.

Figure13 explores the effect of mandated SD in the presence of an intermediate-
level self-regulated SD, σS = 0.4. Again, and similar to the results of Sect. 3.5,
increasing the level of mandated SD causes that the selection for V2 to become sig-
nificantly stronger.

While the results for the New Orleans Network are qualitatively similar with and
without school closure, we notice that the effect of further SD measures on the back-
ground of closed schools is stronger, since we start with a somewhat sparser network.
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a b

Fig. 13 (Color figure online) New Orleans Network under school closure: the role of mandated SD in
the spread of viruses. Time series are shown for four scenarios of no (σM = 0, black), low (σM = 0.2,
blue), moderate (σM = 0.4, red), and high (σM = 0.6, green) mandated SD, in the presence of moderate
self-regulated SD (σS = 0.4). a plot is the prevalence of V1 (solid) and V2 (dashed); b shows the proportion
of V2 (V2/(V1 + V2)). β1 = β2 = 0.29 and all the other parameters are as in Fig. 1 in the main text
(corresponding to R0 = 2.5). Means and standard errors are shown for 1000 stochastic realizations

Appendix E: Parameter Dependence of the Results

Here, we present simulation results that show how the viral co-dynamics change with
system parameters.

Figure14 plots the proportion of mutant infections as a function of time, and shows
results for six different scenarios. The top row panels correspond to a lower overall
transmission rate (β = 0.0028 per day) and the bottom panels to a higher transmission
rate (β = 0.1 per day). Further, we investigate the role of initial conditions: from left
to right the ratio V2(0)/V1(0) takes values 0.1, 0.01, and 0.002. Shown is the impact
of different levels of mandated SD (σM = 0.0, 0.2, and 0.4) for the fixed level of
self-regulated SD (σS = 0.4), for the dynamics on a scale-free network.

We observe that in all cases, increasing the level of mandated SD (σM ) enhances the
asymptomatic mutant. Decreasing V2(0)

V1(0)
causes larger separation between the peaks of

V1 and V2 (Turkyilmazoglu 2021), and therefore, the proportion of V2 stays higher for
a longer time. On the other hand, increasing transmission rate β reduces the advantage
of V2 as a result of both types of SDs.

Figures 15 and 16 show the cumulative infection for the wild type and mutant virus,
respectively.We observe, not surprisingly, that the total number of infections decreases
with the level of mandated SD, see Fig. 15. On the other hand, the influence of σM on
the dynamics of V2 is less straightforward. In Fig. 16, we can see that for relatively
small infectivity and a larger initial proportion of the mutant virus (panel (a)), higher
values of σM result in a lower number of individuals infected with the mutant virus.
Decreasing the initial proportion of V2 reverses this effect (panels (b,c)). To explain
this we note that as the quantity V2(0)/V1(0) decreases (left to right), the peaks of
V1 and V2 become more and more separated, approaching the scenario described in
“Appendix 1.” As was shown analytically, in the limit of a large time separation of
the two epidemics, the growth rate of the advantageous mutant will increase with
mandated SD, which is consistent with the patterns in Figs. 16)b, c. In the absence
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a b c

d e f

Fig. 14 The effect of mandated SD on the proportion of V2 for scenarios of low/high transmission rate and
different initial conditions. The proportion of the asymptomatic strain, V2, is shown as a function time, for 3
different levels of mandated SD (σM = 0, 0.2, 0.4) and fixed positive level of self-regulated SD (σS = 0.4)

on scale-free network: a β = 0.0028 per day and V2(0)
V1(0)

= 0.1; b β = 0.0028 per day and V2(0)
V1(0)

= 0.01;

c β = 0.0028 per day and V2(0)
V1(0)

= 0.002; d β = 0.1 per day and V2(0)
V1(0)

= 0.1; e β = 0.1 per day and
V2(0)
V1(0)

= 0.01; and f β = 0.1 per day and V2(0)
V1(0)

= 0.002. All the other parameters are as in Fig. 1. The

levels for mandated and self-regulated SD are selected in such a way that R0 remains above one so an
outbreak for V1 is observed

of this separation, the two epidemics are nearly concurrent, and mandated SD affects
both viruses in the same way, reducing the total number of infections (panel (a)).

Note that for a higher overall infectivity (Fig. 16d–f), for all three choices of
the initial conditions, the two epidemics are sufficiently separated in time to exhibit
behavior patterns studied in “Appendix 1.” This is because higher values of β result
in faster, shorter epidemic waves, such that even the initial ratio V2(0)/V1(0) = 0.1
leads to the first wave subsiding significantly before the second one takes off.

For completeness, we also investigated the role of self-regulated SD on the cumu-
lative numbers of infections for the wild type virus (the top row of Fig. 17) and for the
mutant virus (the bottom row). Three types of networks are shown (from left to right):
scale-free, spatial, and the synthetic New Orleans network. In all cases, as the level of
self-regulated SD increases, the total number of asymptomatic cases increases, with
a corresponding decrease in the number of symptomatic cases. This is the result of an
increased advantage of V2 as we increase the value of σS .

In Figs. 15–17, we also can capture the behavior of final epidemic size for each
virus depending on different levels of SD strategies. For instance, while increasing
mandated SD decreases final size of V1 (see Fig. 15), the final size of V2 does not have
a monotonic response to SD, that is, mandated SD can increase or decreases the final
size of V2 depending on the transmission parameters and SD intensity (see Fig. 16).

To investigate these behaviors with more details, we ran the ODE version of our
model, (1–1c), for different levels of social distancing, σM and σS . Figure18 shows
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a b c

d e f

Fig. 15 The effect of mandated SD on cumulative infection of symptomatic strain for scenarios of low/high
transmission rate and different initial conditions. The cumulative infection for symptomatic strain, V1+ R1,
is shown as a function time, for six different levels of mandated SD (σM = 0, 0.2, 0.4) and fixed positive
level of self-regulated SD (σS = 0.4) on scale-free network. The parameters for a–f are as in Fig. 14

a b c

d e f

Fig. 16 The effect ofmandated SD on cumulative infection of asymptomatic strain for scenarios of low/high
transmission rate and different initial conditions. The cumulative infection for asymptomatic strain, V2+R2,
is shown as a function time, for six different levels of mandated SD (σM = 0, 0.2, 0.4) and fixed positive
level of self-regulated SD (σS = 0.4) on scale-free network. The parameters for a–f are as in Fig. 14

final size of V1, final size of V2 and total final size (summation of final size of V1, and
final size of V2) as functions of σM and σS values, over their range [0, 1]. Here, we
assume β = 0.5, γ = 0.1, V2(0)

V1(0)
=, 0 < σS < 1, and the maximum value of σM is

chosen so that R0 > 1.
In the panel A of Fig. (18), we observe that final size of V1 decreases in both x and

y directions, indicating that this characteristic always decreases with increase in social
distancing, that is, both mandated and self-regulated SD are successful in controlling
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a b c

d e f

Fig. 17 The effect of self-regulated SD on cumulative infection of symptomatic/asymptomatic strains for
various network structures. The cumulative infections for are shown as a function time, for four different
levels of self-regulated SD (σS = 0, 0.2, 0.4, 0.7) and no mandated SD (σM = 0.0), simulated on a, d
scale-free network; b, e spatial network; c, f NewOrleans network. All the other parameters are as in Fig. 1
for a–e and Fig. 6 for c, f
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Fig. 18 Final sizes versus SD levels: the model in (1–1c) is used to quantify the amount of final sizes for
V1 (a), V2 (b), and both (c), for different levels of SD strategies (σM and σS ). The parameter values are
β = 0.5, γ = 0.1, and for initial condition we have y10 = 0.05 and y20 = 0.0001, thus y20

y10
= 0.002

final size of V1. In panel (B), we observe that final size of V2 always increases in
y direction, that is, increasing self-regulated SD causes an increase in final size of
V2. However, in x direction, final size of V2 can be both increasing or decreasing,
indicating that the final epidemic size of V2 may end up larger for higher level of
mandated SD, depending on the social distancing parameter values. Total final size (in
panel (C)) decreases in x direction, indicating that it always decreases with mandated
SD; however, it may be increasing in y direction, similarly indicating that the total
epidemic size may end up larger for higher levels of self-regulated SD, depending
on the social distancing parameter values. These observations become more clear if
we plot the partial derivatives of final sizes with respect to σM and σS , as shown in
Fig. 19.
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Fig. 19 Change in final sizes with respect to SD levels: The same model and parameter values as the one
in Fig. (18) are used to quantify the change of final sizes with respect change of SD strategies

The color bars in Fig. 19 indicate both positive and negative values for only two
panels of six plots, (E) and (I), which correspond to the two interesting cases stated
above:

1. Higher mandated social distancing may lead to a higher epidemic size for V2.
2. Higher self-regulated social distancing may lead to a higher total epidemic size.

These outcomes are only observed for a subset of values on the σM σS plane.
Furthermore, these results depend on transmission rate β and initial infection ratios

y20
y10

. Figure20 shows the regions where observations (1) and (2) hold, for various
transmission rates, β = 0.2, 0.5, 0.9, 1.5, and Fig. 21 shows these regions for initial
conditions, y20

y10
= 0.1, 0.01, 0.001. First columns indicate the regions for which

higher mandated SD (σM ) leads to a higher final epidemic size for V2. The second
columns indicate the regions for which higher self-regulated SD leads to higher total
final epidemic size, and lighter colors indicate higher rates of increase.

In Fig. 20 (the first column), the size of the colored region increases with the
transmission rate β; indicating that if the transmission rate is high, mandated SD is
likely to lead to a higher final epidemic size for V2. In its second column, the size of
the colored region is large for all transmission rate values, and occupies σS > 0.2,
indicating that some self-regulatedSDhelps decrease the total epidemic size.However,
beyond a critical value (σS > 0.2 here), any increase in self-regulated SD is likely to
increase total final epidemic size. Looking closer, we observe that the region is not
only larger for lower β values, but also the rate of increase is higher, indicating that
this negative effect of self-regulated SD on the total epidemic size is stronger for lower
transmission rates.

In the first column of Fig. 21, we observe that the size of the colored region is non-
monotonic as the initial condition y20

y10
decreases. This result is consistent with result
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Fig. 20 The region for which final epidemic sizes increase as a result of social distancing, for various
transmission rates: The same model and recovery rate as those in Fig. (18), initial condition y10 = 0.001,
y20 = 0.0001 ( y20y10

= 0.1), and various transmission rates are used. The left column shows the region
of SD parameter values, for which final epidemic size of V2 increases with increasing mandated SD. The
right column shows the region of SD parameter values, for which total final epidemic size increases with
increasing self-regulated SD
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Fig. 21 The region for which final epidemic sizes increase as a result of social distancing for various initial
conditions: The same model and infection parameters as those in Fig. (18), but various initial conditions
are used. The left column shows the region of SD parameter values, for which final epidemic size of V2
increases with increase in mandated SD. The right column shows the region of SD parameter values, for
which total final epidemic size increases with increase in self-regulated SD

in Fig. 16, indicating that for relatively smaller values of V2, mandated SD is likely to
lead to a higher final epidemic size for V2, unless the value for initial V2 is much lower
than that of V1, which causes separation of epidemics discussed in “Appendix 1.” In
its second column, on the other hand, we see that the critical value for σS increases as
y20
y10

decreases.
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