Preliminary Exam in Complex Analysis

Fall 1992

1. Find a conformal map of the unit disk \(\Delta = \{ z : |z| < 1 \} \) to the first quadrant \(Q = \{ z = x + iy : x > 0, y > 0 \} \) that sends \(z = 0 \) to \(z = 1 + i \).

2. The principal determination of \(z = \text{arctan} w \) is the solution of \(\tan z = w \) for which \(-\pi/2 < \text{Re} z < \pi/2 \). Determine the domain of this principal determination and an expression for the principal determination of \(\text{arctan} w \) in terms of a principal determination of the logarithm function.

3. Let \(w = f(z) \) be a function that is analytic on the closure of the unit disc \(\Delta \) in the complex plane. Assume that \(f \) is not identically zero and show there are points \(z_1, \ldots, z_N \) in \(\Delta \) and numbers \(r_1, \ldots, r_N \) so that

\[
u(z) = \log |f(z)| - \sum_{j=1}^{N} r_j \log |z - z_j|
\]

is harmonic on \(\Delta \setminus \{ z_1, \ldots, z_N \} \).

4. Prove that a non-constant analytic function is an open mapping.

5. Determine (for all values in the domain of \(F \)) the value of

\[
F(w) = \frac{1}{2\pi i} \int_{C} \frac{1}{1- \omega z} dz,
\]

where \(C \) is the positively oriented unit circle \(|z| = 1 \).

6. Evaluate

\[
\frac{1}{2\pi i} \int_{C} \frac{f'(z)}{f(z)} dz
\]

over a (positively oriented) large circle if \(f(z) \) is a polynomial.

7. Give an explicit expression for a meromorphic function \(w = f(z) \) defined on the complex plane whose only poles are simple poles at each point in the set

\[
\mathbb{Z} + i\mathbb{Z} = \{ \omega_{m,n} = m + in : m, n \in \mathbb{Z} \}
\]

and such that the residue of \(f \) is one at each pole. Be sure to state carefully any results used in your construction.

8. Show the function in Problem 7 cannot be doubly periodic. That is show it is impossible that \(f(z + \omega_{m,n}) = f(z) \), for all \(m, n \) in \(\mathbb{Z} \).
9. Let \(g \) be analytic on a disc in the complex plane. Suppose that the differential equation

\[
\frac{dv}{dz} = yg(z)
\]

has an analytic solution in a neighborhood of each point in this disc. Show there is a global analytic solution to this differential equation on this disc.

10. Let \(g = g(z) \) be continuous on \(|z| = 1 \) and define

\[
G(z) = \frac{1}{2\pi i} \int_{|z|=1} \frac{g(\xi)}{\xi-z} d\xi, \quad |z| = 1.
\]

Determine for \(|u| = 1 \)

\[
\lim_{r \to 1} [G(ru) - G(r^{-1}u)].
\]