Complex Analysis Preliminary Exam

Fall 1994

1) Evaluate the following:
 a) \[\int_{C} \frac{e^z}{z^2 + 1} \, dz \] where \(C \) is the circle of radius 2 centered at 0, oriented counter clockwise.
 b) \[\int_{0}^{\infty} \frac{x \sin x}{(z^2 + 4)^2} \, dx. \]

2) Give the Laurent expansion for \(f(z) = \frac{(z^2 - 1)}{(z + 2)(z + 3)} \) in the region \(2 < |z| < 3. \)

3) Let \(f_n(z) = xe^{-\frac{1}{n}z^2}. \) Show this sequence of functions is uniformly convergent on the real axis but is not uniformly convergent on any closed ball, \(B(0, r), \) centered at 0 with radius \(r. \)

4) Let \(\lambda > 1. \) How many roots does \(z + e^{-z} = \lambda \) have in the right half plane?

5) a) Find a conformal map from the infinite strip \(0 < \text{Im} z < 1 \) onto the semi-infinite strip \(-\frac{\pi}{2} < \text{Re} z < \frac{\pi}{2}, \text{Im} z > 0. \)
 b) Find an harmonic function \(u(z) \) on the semi-infinite strip \(-\frac{\pi}{2} < \text{Re} z < \frac{\pi}{2}, \text{Im} z > 0 \) with boundary values \(u(z) = 1 \) for \(\text{Im} z = 0 \) and \(u(z) = 0 \) for \(\text{Re} z = \frac{\pi}{2} \) and \(\text{Re} z = \frac{\pi}{2}. \)

6) Assume \(2z(1 - z)\phi'(z) = \phi(z) + z \) and \(\phi(0) = 0. \) Show

 \[\phi(z) = z + \frac{2}{3}z^2 + \frac{2 \cdot 4}{3 \cdot 5}z^3 + \cdots \]

 for \(|z| < 1. \)

7) Let \(\Omega \) be the unbounded region of the extended plane which is exterior to the two circles of radius 4, centered at 5 and -5. Find a fractional linear transformation mapping \(\Omega \) to an annulus \(1 < z < R. \) What is \(R? \)
(8) Let \(f(z) \) be analytic in \(\Re z > 0 \) and assume
a) \(f(1) = 1 \),
b) \(f(z + 1) = zf(z) \),
c) \(\frac{d^2}{dz^2} (\log f(z)) = \sum_{n=0}^{\infty} \left(\frac{1}{n + z} \right)^2 \). Prove \(f(z) = z^{-1} e^{cz} \prod_{n=1}^{\infty} e^{z/n} (1 + \frac{z}{n})^{-1} \).

9) Let \(f(z) \) be analytic and assume \(f(0) \neq 0 \) and \(|f(z)| \leq M \) on the circle \(|z| \leq R \). Prove that the number of zeros \(f(z) \) has in the region \(|z| \leq \frac{1}{2} R \) does not exceed \(\frac{1}{\log^2 \log(M/|f(0)|)} \).

10) Classify the one-to-one analytic functions \(f : \mathbb{C} \to \mathbb{C} \). (Sketch the proofs of the theorems you use.)