COMPLEX ANALYSIS PRELIM - SEPTEMBER 1997

Definition 1. Below, $B(a,r) = \{z \in \mathbb{C} | |z-r| < a\}, \ \bar{B}(a,r) = \{z \in \mathbb{C} | |z-r| \le a\}, \ \partial B(a,r) = \{z \in \mathbb{C} | |z-r| = a\}.$

Problem 1. Find all possible values of the integral

$$\int_{\gamma} \frac{\sin z \, dz}{z^3 + z^4},$$

where γ is a closed smooth curve.

Problem 2. Let $a, b \in \mathbb{C}$ be two points and γ be a smooth curve joining them, and let $g(\xi)$ be a continuous function on γ . Prove that the function f(z) defined by the formula

$$f(z) = \int_{\gamma} \frac{g(\xi)d\xi}{\xi - z}$$

is analytic on $\mathbb{C} \setminus \gamma$. Justify every step.

Problem 3. Which of the following do or do not exist? Prove your answers using the standard theorems if you need to.

- 1. An entire function whose zeros are $\{0\} \cup \{1/n \mid n \in \mathbb{N}\}.$
- 2. A meromorphic function on \mathbb{C} whose poles are $\{0\} \cup \{1/n \mid n \in \mathbb{N}\}$.
- 3. A meromorphic function on \mathbb{C} whose poles are $\{1/n \mid n \in \mathbb{N}\}$.
- 4. A meromorphic function on $\mathbb{C}\setminus\{0\}$ whose poles are $\{1/n\mid n\in\mathbb{N}\}$ with residues n.

Problem 4. Classify all holomorphic automorphisms of $\mathbb{C} \setminus \{0\}$.

Problem 5. Let f(z) be a function analytic on the upper half-plane $Im z \ge 0$ which has a non-essential singularity at ∞ , and assume that |f(z)| = 1 when Im z = 0. Find a general formula for f(z). Hint: start with the case when f has no zeros.

Problem 6. How many zeros does the function $f(z) = z^4 - 5z + 1$ have in B(0,1)? Write down the first two nonconstant terms in the power expansion about $\lambda = 1$ of a root $z(\lambda)$ of the equation $z^4 - 5z + \lambda = 0$.

Problem 7. Let f(z) be a double-periodic meromorphic function with the periods $\Lambda = \{n + mi \mid n, m \in \mathbb{N}\}.$

- 1. Prove that f cannot have exactly one zero of multiplicity 1 (and no other zeros) modulo the periods.
- 2. Give an example of such a function that has exactly one zero of multiplicity 3.
- 3. Describe an explicit embedding of \mathbb{C}/Λ minus a point into \mathbb{C}^2 .

Problem 8. Let f(z) be an analytic function on B(0,1). Assume that $|f(z)| = \phi(x)\psi(y)$ for all $z = x + iy \in B(0,1)$ and some functions ϕ, ψ . Prove that either $f(z) \equiv 0$ or $f(z) = \exp(az^2 + bz + c)$ for some $a \in \mathbb{R}$ and $b, c \in \mathbb{C}$.

Problem 9. Prove that there exists a holomorphic function f on B(0,1) which cannot be analytically extended to any larger connected open region. Next, prove the same for an open square $\{|x|<1,|y|<1\}$. Can you generalize?