QUALIFYING EXAMINATION IN COMPLEX ANALYSIS

August 12, 2011, 9-11 a.m.

 $\mathbb D$ denotes the (open) unit disk, $\overline{\mathbb D}$ the closed unit disk, and $\mathbb T=\partial\mathbb D$ the unit circle. Provide justifications as appropriate.

1. (15 points) Use methods of complex analysis to evaluate

$$\int_0^\infty \frac{\sqrt{x}}{(x+1)^2} \, dx$$

Be sure to provide complete justifications.

- 2. (15 points) Let c be a complex number such that |c| < 1/3. Show that on the open set $\Re e(z) < 1$ the function $f(z) = ce^z$ has exactly one fixed point, i.e., a point z_0 such that $f(z_0) = z_0$.
- 3. (20 points) Let $\overline{B}(a,r)$ denote the closed disk of radius r>0 about a point $a\in\mathbb{C}$. Let f be a holomorphic function on an open set containing $\overline{B}(a,r)$, and let $M=\sup_{z\in\overline{B}(a,r)}|f(z)|$. Prove that for $z\in\overline{B}(a,r/2)$, $z\neq a$, we have

$$\frac{|f(z)-f(a)|}{|z-a|}\leq \frac{2M}{r}.$$

- 4. (15 points) Suppose $\Omega \subset \mathbb{C}$ is a region containing \mathbb{D} and f is holomorphic on Ω . Suppose that on \mathbb{D} we have $f(z) = \sum a_n z^n$ and the series has radius of convergence equal to 1.
 - a. Give an example of such an f so that the series converges at every point of \mathbb{T} .
 - b. Give an example of such an f that is analytic at $z_0 \in \mathbb{T}$ and for which $\sum a_n z_0^n$ diverges.
 - c. Prove that f cannot be analytic at *every* point of \mathbb{T} .
- 5. (20 points) Consider $f(x, y) = x^2 2y + y^3$. Let P = (1, 1).
 - a. Let $X = \{(x, y) \in \mathbb{R}^2 : f(x, y) = 0\}$. Prove that there is a neighborhood U of P so that $U \cap X$ is given by $y = \phi(x)$ for some \mathbb{C}^1 function ϕ . Give $\phi'(x)$.
 - b. Now consider the same equation in \mathbb{C}^2 (i.e., $Y = \{(x, y) \in \mathbb{C}^2 : f(x, y) = 0\}$). Prove that the analogous statement holds. What is $\phi'(x)$ as an \mathbb{R} -linear map from \mathbb{C} to \mathbb{C} ? Why is ϕ holomorphic? (Hint: If you consider $g: \mathbb{C} \to \mathbb{C}$ as a map $\tilde{g}: \mathbb{R}^2 \to \mathbb{R}^2$, how is holomorphicity of g characterized by $D\tilde{g}$?)
- 6. (15 points) Do either a or b.
 - a. Suppose f is meromorphic on \mathbb{D} , continuous on $\overline{\mathbb{D}}$ except at finitely many points of \mathbb{D} , and real on \mathbb{T} . Prove that f is a rational function.
 - b. Let $\Omega \subset \mathbb{C}$ be the region inside the unit circle |z|=1 and outside the circle $|z-\frac{1}{4}|=\frac{1}{4}$. Find a one-to-one conformal map from Ω onto an annulus r<|z|<1 for the appropriate value of r.