Complex Analysis Premlim

April 4, 1996

Instructions. Use your own paper to work the problems.

1. Suppose $f: \mathbb{C} \to \mathbb{C}$ is differentiable at z in the sense that there exists an \mathbb{R} -linear map $T: \mathbb{C} \to \mathbb{C}$ such that

$$\lim_{w \to 0} \frac{|f(z+w) - f(z) - T(w)|}{|w|} = 0$$

Show that the following four statements are equivalent.

- (a) f satisfies the Cauchy-Riemann equations at z.
- (b) iT(w) = T(iw) for all $w \in \mathbb{C}$.
- (c) T is complex linear.
- (d) f is holomorphic at z in the sense that the complex derivative

$$f'(z) = \lim_{w \to 0} \frac{f(z+w) - f(z)}{w}$$

exists.

- (e) When the above hold show that the Jacobian of f at z, f being viewed as a map of \mathbf{R}^2 to \mathbf{R}^2 , is $|f'(z)|^2$.
- 2. Find all points at which the function f given by

$$f(x+iy) = x^3 + y + ixy$$

is holomorphic.

- 3. Suppose F is holomorphic with f = F' continuous at each point of an open set D. If γ is a piecewise smooth curve in D, show that the integral of f over γ depends only on the endpoints of γ .
- 4. Suppose D is an open set with the following property: there is a point $z_0 \in D$ such that D contains the line segment going from z_0 to z for every $z \in D$. If f is continuous on D and the integral of f over every triangle in D is 0, prove that f has an anti-derivative on D.
- 5. Consider the power series $\sum_{n=0}^{\infty} a_n z^n$.
 - (a) If it converges for some $z_0 \neq 0$, give a direct proof that it converges absolutely and uniformly in the set $|z| \leq r$ for every $r < |z_0|$.
 - (b) Show there is a unique R (the radius of convergence for the power series) with $0 \le R \le \infty$ such that

$$\sum_{n=0}^{\infty} |a_n| |z|^n < \infty, \quad |z| < R$$

$$\sum_{n=0}^{\infty} |a_n| |z|^n = \infty, \quad |z| > R$$

6. Suppose f is continuous on the circle $\gamma(\theta) = e^{i\theta}$, $0 \le \theta \le 2\pi$. Set

$$F(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw, \quad |z| < 1$$

and for an integer n set

$$f^{\wedge}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) e^{-in\theta} d\theta$$

(a) Give a direct proof that

$$F'(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-z)^2} dw, \quad |z| < 1$$

(b) Use the identity

$$\frac{1}{w-z} = \sum_{k=0}^{n} \frac{z^k}{w^{k+1}} - \frac{(z/w)^{n+1}}{w-z}, \quad z \neq w$$

to get an explicit estimate for

$$\left| F(z) - \sum_{k=0}^{n} f^{\wedge}(k) z^{k} \right|$$

showing that the series converges uniformly to F on each closed disk $|z| \le r < 1$.

- (c) Compute F when $f(w) = \overline{w}$.
- (d) If $f(w) = \sum_{n=0}^{\infty} a_n w^n$, |w| < R, R being the radius of convergence for the power series, and 1 < R, find a formula for the coefficients a_n , and show that F = f on the disk |z| < 1.
- 7. Let f be a non-constant holomorphic function defined on an open connected set U.
 - (a) Show that the zeros of f are isolated.
 - (b) Suppose D is a closed disk contained in U and that w is a complex number such that $f(z) \neq w$ for all z in ∂D . Let

$$W = \int_{\partial D} \frac{f'(z)}{f(z) - w} dz$$

Show that $w \in f(D)$ iff $W \neq 0$; if $w \in f(D)$ and z_1, \ldots, z_k are the distinct zeros of f(z) - w in D and z_j is a zero of order m_j show that

$$W = \sum_{j=1}^{k} m_j$$

