Complex Analysis Qualifying Exam, January 2011

(6 problems, 2 hours)

- 1. Include brief justification for your answers to Parts b) and c) of this problem.
 - a) Complete the definition: $f : \mathbb{R}^n \to \mathbb{R}^m$ is *(real) differentiable* at a point $a \in \mathbb{R}^n$ if there is a linear transformation
 - b) Give an example of a function $g : \mathbb{R}^2 \to \mathbb{R}$ whose first order partial derivatives exist everywhere, such that g is not differentiable at (0, 0).
 - c) Give an example of a function $h : \mathbb{R}^2 \to \mathbb{R}^2$ which is differentiable everywhere, but not complex differentiable anywhere.

2. Find all meromorphic functions that have a simple pole at the point 2 and a double pole at ∞ , but are analytic elsewhere. Prove that your list is complete.

3. Write \mathbb{D} for the open unit disc and set $G = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0 \text{ and } |z - 1| > 1\}$. Find all conformal one-to-one maps of G onto \mathbb{D} . You may express the maps as compositions, but should explain why your list is complete.

- 4. Use methods of complex variables to evaluate the integral $\int_0^\infty \frac{\cos x \cos 4x}{x^2} dx$.
- 5. Suppose f is entire and has Taylor series $\sum_{n=0}^{\infty} a_n z^n$ about 0.
 - a) Express (no proof required) a_n as a contour integral along the circle of radius R centered at 0.

b) Apply Part a) to verify that the power series $\sum_{n=0}^{\infty} a_n z^n$ converges uniformly on each bounded subset of \mathbb{C} .

c) Determine, with proof, those functions f for which the power series $\sum_{n=0}^{\infty} a_n z^n$ converges uniformly on all of \mathbb{C} .

6. Set $H_+ = \{z \in \mathbb{C} : \text{Im } z > 0\}$. Suppose $f : H_+ \cup \mathbb{R} \to \mathbb{C}$ satisfies the following:

- (i) f(i) = i,
- (ii) f is continuous,
- (iii) f is analytic on H_+ ,
- (iv) f(z) is real if and only if z is real.

Show that $f(H_+)$ is a dense subset of H_+ .