Topology Prelim September 24, 1992

1) Let A and B be disjoint small round open disks in S^2 and let h be a homeomorphism from A to B. Let $X = S^2/\sim$ have the quotient topology where $a \sim h(a)$ for all $a \in A$.

- 2) Let X be the union of a torus and a disk as shown below. Compute the homology of X. $\times = \times$
- 3) Let T be a torus minus a small round open disk. Let $\alpha = \partial T$ and use covering spaces to show that $[\alpha] \neq 1 \in \pi_1(T,*)$.
- 4) State the homotopy lifting theorem for covering spaces and then use it to compute $\pi_1(S^1,*)$.
- 5) Let X be an arbitrary subset of \mathbb{R} . Let $f: X \to \mathbb{R}$ be proper (this means f^{-1} (compact subset of \mathbb{R}) = compact subset of X). Show that the graph of f is a closed subset of \mathbb{R}^2 .
- 6) Let f: X → X be continuous.
 a) If X = S¹ ∨ S¹ must f have a fixed point?
 b) If X = (the wedge product of two closed intervals along an interior point of each)

must f have a fixed point?

- 7) Let $S^1 = \{\vec{v} \in \mathbb{R}^2 \mid |\vec{v}| = 1\}$. Suppose $f: S^1 \to \mathbb{R}^2 0$ is continuous and $\vec{v} \cdot f(\vec{v}) > 0$ for all $\vec{v} \in S^1$. Prove that f does not extend to a function from D^2 into $\mathbb{R}^2 0$.
- 8) Let A be the union of two disjoint circles contained in $\mathbb{R}^3 \subset \mathbb{R}^3 \cup \{\infty\} = S^3$ as indicated. Compute the homology of $\mathbb{R}^3 A$.