1) Let A and B be disjoint small round open disks in S^2 and let h be a homeomorphism from A to B. Let $X = S^2 / \sim$ have the quotient topology where $a \sim h(a)$ for all $a \in A$.

 a) Is X Hausdorff?

 b) Is X connected?

2) Let X be the union of a torus and a disk as shown below. Compute the homology of X.

 \[
 \begin{array}{c}
 \includegraphics[width=2cm]{torus}\n \end{array}
 \]

3) Let T be a torus minus a small round open disk. Let $\alpha = \partial T$ and use covering spaces to show that $[\alpha] \neq 1 \in \pi_1(T, \ast)$.

4) State the homotopy lifting theorem for covering spaces and then use it to compute $\pi_1(S^1, \ast)$.

5) Let X be an arbitrary subset of \mathbb{R}. Let $f : X \to \mathbb{R}$ be proper (this means $f^{-1}(\text{compact subset of } \mathbb{R}) = \text{compact subset of } X$). Show that the graph of f is a closed subset of \mathbb{R}^2.

6) Let $f : X \to X$ be continuous.
 a) If $X = S^1 \vee S^1$ must f have a fixed point?
 b) If $X = \bigvee_{\text{interior point of each}}$ (the wedge product of two closed intervals along an interior point of each) must f have a fixed point?

7) Let $S^1 = \{ \bar{u} \in \mathbb{R}^2 \mid |\bar{u}| = 1 \}$. Suppose $f : S^1 \to \mathbb{R}^2 - 0$ is continuous and $\bar{u} \cdot f(\bar{u}) > 0$ for all $\bar{u} \in S^1$. Prove that f does not extend to a function from D^2 into $\mathbb{R}^2 - 0$.

8) Let A be the union of two disjoint circles contained in $\mathbb{R}^3 \subset \mathbb{R}^3 \cup \{ \infty \} = S^3$ as indicated. Compute the homology of $\mathbb{R}^3 - A$.

Typeset by AMS-TEX