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3.1 INTRODUCTION
Ecological network analysis (ENA) (Patten, 1978; Fath and Patten, 1999; Ulanowicz,

2004) is a system-oriented methodology to simulate and analyze ecosystem interac-

tions. ENA relies on compartmentalmodels that are constructed to represent the trans-

actions of energy or matter within ecosystems. To facilitate the evaluation of an

ecosystem, various system-wide measures have been proposed to capture its holistic

properties ( Jørgensen et al., 2013). Over the years, ENA has been enriched by new

ecological measures, many of which are inspired by network measures or concepts

utilized in other fields. Finn’s cycling index (FCI) (Finn, 1977) is based on the

Leontief structure matrix, initially developed for economic input–output analysis

(Leontief, 1966). Ascendancy and several related measures (Ulanowicz, 1986) are

based on information theory (MacArthur, 1955; Rutledge et al., 1976) and thermody-

namics. First centrality measures were originally developed for and applied to social

networks (Katz, 1953; Sabidussi, 1966). System-wide measures in ecology play an

increasingly important role in studying and assessing various ecosystems (Patrı́cio

et al., 2004), including forest ecosystems (Schaubroeck et al., 2012), marine ecosys-

tems (Tomczak et al., 2013), and lake ecosystems (Chrystal and Scharler, 2014).

The understanding of relationships between ecosystem properties has been in the

forefront of system research in ecology for years ( Jordán and Jørgensen, 2012). Un-

like empirical ecological indicators (e.g., concentration of a toxic substance, rate of

primary production), ENA measures are based on compartmental models of the eco-

system, and often have complicated formulations. Application of ENA measures for

ecosystem studies and environmental management is not any easier than their devel-

opment. Except for several basic measures (e.g., #links, #compartments, and total

system throughflow (TST)), most of these measures (e.g., FCI, ascendency, and
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development capacity) require a more profound understanding of which health as-

pects they are able to cover and how they can be used in environmental management

( Jorgensen et al., 2005). Mastering the development, computation, and interpretation

of over 40 ENA measures poses a serious challenge for the scientist intending to uti-

lize them. Actually, once a compartmental model is built, computation of these mea-

sures is often straightforward, and multiple freely available software packages exist

(Fath and Borrett, 2006; Kazanci, 2007; Schramski et al., 2011; Borrett and Lau,

2014) to handle the task. However, interpreting each value computed for each mea-

sure is a much greater challenge.

This chapter provides a detailed description of most commonly used ENA mea-

sures, and investigates their relationships. While mastering over 40 measures is an

extremely difficult task, investigating the relationships between these measures may

provide insightful information as to which different aspect of an ecosystem each

measure represents. For example, cycling index (Finn, 1978; Ma and Kazanci,

2014) and indirect effects index (Higashi and Patten, 1986; Ma and Kazanci,

2012) are two different measures. Assuming that these two measures turn out to

be very similar for two different ecosystem models, is this interesting information

that requires further attention, or is it already expected?

Earlier studies of pairwise relationships of ecosystem measures have been con-

ducted through theoretical and empirical investigations. Cohen and Briand (1984)

reports that the link density (the average number of links per compartment) does not

change with network size. In contrast, Havens (1992) shows link density increases

with network size. Yodzis (1980) finds a somewhat slow decrease of connectance

with increasing species richness, while Martinez (1992) reports that the connec-

tance tends to remain constant across networks of different size. Higashi and

Patten (1986, 1989) and Patten (1991) show that indirect effects increase with net-

work size, connectance, FCI, and TST. Fath (2004) constructs artificial ecological

networks to investigate the relationships between amplification, homogenization,

synergism, and network size. Buzhdygan et al. (2012) compares 10 system-wide

measures for 7 geographically close pastoral ecosystems, built based on 3 years

of field research. Vermaat et al. (2009) assesses 20 food web-structure properties

and finds substantial covariance exists among these properties.

In this chapter we provide a more comprehensive comparison among a

much larger set of ENA measures than earlier works. This study is based on pub-

lished network models of 52 ecosystems, with a variety of network sizes, flow cur-

rencies, and flow and storage magnitudes. A thorough literature search informs us

that there exist around 40 commonly used system-wide measures in ecology in gen-

eral. Nine of these measures are based on the topology (adjacency matrix) of the

network, 26 are defined using flow rates, and 5 are based on storage information.

Due to their complex formulations, it is not feasible to derive the mathematical re-

lations between the measures in an algebraic fashion. Instead, cluster analysis is

used as a statistical tool to classify the measures based on their similarities. We

report our findings and compare them with observations from earlier published

works.
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3.2 DESCRIPTION OF SYSTEM-WIDE MEASURES
System-wide measures for ENA are based on compartmental models of ecosystems.

Compartments represent various entities in the ecosystem, such as plants, animals,

and nutrient sources. The flows among compartments are the transport of energy or

matter within the system. Boundary input and output represent the transfer of energy

or matter between the system and the environment. Each model contains the follow-

ing data: environmental inputs (z), environmental outputs (y), flow matrix (F), and

storage values (x). Assuming there are n compartments in the system, this data is

denoted as follows:

zi : Rate of environmental input to compartment i

yi : Rate of environmental output fromcompartment i

xi : Storage value at compartment i

Aij : Indicator of flow fromcompartmentent j columns of Að Þ to compartment i
rows of Að Þ

Fij : Rate of direct flow fromcompartment j columns of Fð Þ to compartment i
rows of Fð Þ

where i, j¼ 1,2,…,n. We also define a generalized flow matrix R that combines

flows among compartments (F), environmental inputs (z), and outputs (y):

R¼
F z

y 0

 !

Rij is similar to the flow matrix F, with an additional compartment n+ 1ð Þ repre-
senting the environment. Fij ¼Rij for i, j¼ 1, 2, # # #, n. Throughflow Ti is the rate of

material (or energy) moving through compartment i. Input throughflow is defined

as the sum of flow rates into compartment i from other compartments and the envi-

ronment. Similarly, output throughflow is the sum of flow rates from compartment

i to other compartments and the environment. For a system at steady state, input and

output throughflows are equal:

Ti ¼
X

n

j¼1

Fij + zi ¼
X

n

j¼1

Fji + yi

Flow intensity matrix G is obtained by normalizing the flow matrix F by the

throughflows values:

Gij ¼
Fij

Tj

G is actually a one-step probability transition matrix, where Gij represents the prob-

ability of material (or energy) transferring from compartment j to compartment i per
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unit time step. Almost all system-wide measures are defined based on this presented

information.

Depending on the information utilized, these measures can be classified into three

major groups:

1. Structure-based measures only require the topology (adjacency matrix) of the

network, as shown in Figure 3.1a.

2. Flow-based measures are computed based on flow rates and do not require

storage information, as shown in Figure 3.1b.

3. Storage-based measures require storage values, in addition to flow rates, as

shown in Figure 3.1c.

Our work includes 9 structure-based, 26 flow-based, and five storage-based mea-

sures. Detailed description and mathematical definitions of all 40 measures are pro-

vided here.

Structure-based measures

1. #compartments (n): Total number of compartments in the system.

2. #links (m): Total number of connections among all compartments.

3. #SCC: Number of strongly connected components (Newman, 2009). SCC is a

subset of the compartments such that (i) every compartment in the subset has

a path to every other compartment and (ii) the subset is not part of some larger

set with the property that every compartment can reach to every other

compartment.

4. #big SCC: Number of strongly connected components that contain more than one

compartment.

5. Percent nodes in big SCC: Number of compartments participating in big SCCs.

6. Link density, or complexity: Average number of intercompartmental links (m) per

compartment.

Link density¼
m

n

7. Connectance over direct paths: Ratio of the number of direct links (m) to the

number of possible intercompartmental links.

Connectance over direct paths¼
m

n2

8. Connectance over all paths: Ratio of the number of direct and indirect links to the

number of possible intercompartmental links. The difference between this

measure and the previous one is due to the fact that two compartments that are not

directly connected may be indirectly connected via a third (or more)

compartment in between.
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FIGURE 3.1

Ecological network types with different levels of data integration. (a) Only structural data is

provided. (b) Flow rates are included in addition to network topology. (c) Storage values

are included as well.
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9. Degree diversity: Degree of a compartment (D) is the number of links that

connect to it. Themeasure is defined by applying Shannon’s informationmeasure

to the set of degrees of all compartments.

Degree diversity¼$
X

i

Di

D:
log

Di

D:

D. represents the sum of the degrees of all compartments. This measure is

affected by the number of compartments and the evenness of degrees. Higher

number of species and a more even distribution of connections result in an

increase in Shannon’s diversity.

Flow-based measures

1. Total boundary input: Sum of flows entering the system.

Total boundary input¼
X

i

zi

2. Total internal flow: Sum of flow rates of intercompartmental flows.

Total internal flow¼
X

i, j
Fij

3. TST: Sum of throughflows of all compartments in the system.

TST¼
X

i

Ti

4. Mean throughflow: Average throughflow of all compartments.

Mean throughflow¼
TST

n

5. Total system throughput: Sum of all flow rates, including environmental inputs

(z), environmental outputs (y), and intercompartmental flows (F). This measure

is an analogue of TST.

Total system throughput¼
X

i, j
Fij +

X

i

zi +
X

i

yi ¼
X

i, j
Rij

6. Average path length: Average number of compartments a unit flow material

passes through before exiting the system.

Aggradation¼
TST

Total boundary input
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This measure is also named network aggradation by Ulanowicz et al. (2006).

7. I/D ratio: Ratio of direct to indirect flows:

I=Dratio¼

X

i

G2 +G3 + # # #
# $

T
% &

X

i

GTð Þ
¼

X

i

N$ I$Gð ÞT½ &

X

i

GTð Þ
(3.1)

Here, N¼ I +G +G2 + # # # ¼ I$Gð Þ$1
, where I represents the identity

matrix. This measure is the revised version (Ma and Kazanci, 2012) of the

original definition (Patten, 1985).

8. Indirect effects index (IEI): Rescaled version of the previous measure, so that it

takes values between 0 and 1:

IEI¼
I=Dratioð Þ

1 + I=Dratioð Þ
(3.2)

9. Finn’s cycling index (FCI): Fraction of the TST due to cycling (TSTc) (Finn,

1978):

FCI¼
TSTc

TST
¼

1

TST

X

i

Ti
Nii $1

Nii

(3.3)

10. Amplification: Number of entries of the matrix N¼ I$Gð Þ$1
that are larger

than one, excluding the diagonal elements Nij > 1, i 6¼ j
# $

.

11. Amplification percentage: Rescaled version of the previous measure, so that it

takes values between 0 and 1:

Amplification percentage¼
Amplification

n n$1ð Þ

12. Synergism: Ratio of the sum of positive entries over the sum of negative entries

of the utility analysis matrix U:

Synergism¼

X

Uij where Uij > 0

$
X

Uij where Uij < 0

Utility analysis matrix U is defined as U¼ I$Dð Þ$1
, where I represents the

identity matrix and the matrixD is defined asDij ¼ Fij $Fji

# $

=Ti (Patten, 1991).
13. Mutualism: Ratio of the number of positive entries over the number of negative

entries of the utility analysis matrix U (Patten, 1991):

Mutualism¼
Number of tuples i, jð Þ where Uij > 0

Number of tuples i, jð Þ where Uij < 0
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14. Homogenization: Ratio of the coefficient of variation (CV) of G over N (Fath

and Patten, 1999; Fath, 2004). CV is defined as the ratio of the standard

deviation to the mean:

Homogenization¼
CV Gð Þ

CV Nð Þ
¼
sd Gð Þ=mean Gð Þ

sd Nð Þ=mean Nð Þ

15. Throughflow diversity:

Throughflowdiversity¼$
X

i

Ti

TST
log

Ti

TST

16. Ascendency (Asc): Average mutual information (AMI) measure (Equation 3.6)

where total system throughput is used for the constant k:

Ascencency¼
X

i, j
Rij log

RijR..

Ri:R:j
where Ri: ¼

X

j

Rij, R:j ¼
X

i

Rij and R ..¼
X

i, j
Rij

(3.4)

MacArthur (1955) applied Shannon’s information measure to flow rates to

define flow diversity measure H:

H¼$k
X

i, j

Rij

R..
log

Rij

R ..
(3.5)

Rutledge et al. (1976) decomposed H into two parts: H¼AMI+Hc. AMI

quantifies the overall constraint in the system:

AMI¼ k
X

i, j

Rij

R..
log

RijR..

Ri:R:j
(3.6)

Higher AMI values indicate a tighter network organization, channeling flows

along more specific pathways (Ulanowicz, 1986), whereas residual diversity

(Hc) gauges how unconstrained the flows remain, or how flexible the system

remains to reconfigure itself:

Hc ¼$k
X

i, j

Rij

R..
log

R2
ij

Ri:R:j
(3.7)

Heymans et al. (2002) proposed this measure as an indicator of system

resilience.

17. Overhead (F): Residual diversity (Hc) (Equation 3.7) where total system

throughput is used for the constant k:

F¼$
X

i, j
Rij log

R2
ij

Ri:R:j
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18. Development capacity (C): Flow diversity (Equation 3.5) where total system

throughput is used for the constant k:

C¼$
X

i, j
Rij log

Rij

R..

Ascendency, overhead, and development capacity are scaled versions of AMI,

residual diversity, and flow diversity, respectively. The equationH¼AMI+Hc

implies C¼Asc +F.

19. Ratio of ascendency to development capacity: This measure equals the ratio of

AMI/H. Higher values represent an efficient flow network that is rather

vulnerable to perturbations.

20. Ratio of overhead to development capacity: This measure equals the ratio ofHc/

H, and represents the degree of flexibility of the flow network.

21. Internal ascendency (AscI): Ascendency measure based solely on

intercompartmental flows:

AI ¼
X

i, j
Fij log

FijF..

Fi:F:j

22. Internal overhead (FI): Overhead measure based solely on intercompartmental

flows:

FI ¼$
X

i, j
Fij log

F2
ij

Fi:F:j

23. Internal capacity (CI): Development capacity measure based solely on

intercompartmental flows:

CI ¼$
X

i, j
Fij log

Fij

F..

24. Robustness: Characterizes the encounter between the opposing trends toward

efficient operation (AMI/H) and increasing opportunity for reconfiguration

$log AMI=Hð Þð Þ:

Robustness¼$e
AMI

H
log

AMI

H

where e is the base of natural logarithm function.

25. Ratio of internal ascendency to internal capacity:

AscI

CI
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26. Ratio of internal overhead to internal development capacity:

FI

CI

Storage-based measures

1. Total system storage (TSS): Sum of storage values of all compartments:

TSS¼
X

i

xi

2. Mean storage: Average storage value of all compartments:

Mean storage¼
TSS

n

3. System residence time: Average time of flow material retention in the system:

SystemRT¼
TSS

Total boundary input

4. Storage-based cycling index (SCI): Fraction of TSS due to cycling (TSSc)

(Ma and Kazanci, 2014):

SCI¼
TSSc

TSS
¼

1

TSS

X

i

xi
Nii$1

Nii

(3.8)

5. Biomass diversity: Also called information-theoretic biodiversity, this measure is

derived by MacArthur (1955) using Shannon’s information measure on storage

values of compartments:

Biomass diversity¼$
X

i

xi

TSS
log

xi

TSS

3.3 ECOSYSTEM MODELS USED FOR COMPARISON
We selected 52 ecological network models from the literature. Table 3.1 provides the

reference, flow currency, network size, and mean storage for each model. Selected

models have a variety of flow currencies, including carbon, nitrogen, energy, min-

eral, and biomass. The collection includes models with as little as 4 and as high as

124 compartments. Table 3.2 provides summary statistics (minimum, maximum,
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Table 3.1 Fifty-Two Ecological Networks

ID Models

Flow

Currency Flow Unit #Compartment

Mean

Storage

1 Aggregated baltic

ecosystem (Wulff and

Ulanowicz, 1989)

Carbon mg/m2/day 15 59.306

2 Chesapeake

mesohaline ecosystem

(Baird and Ulanowicz,

1989)

Carbon mg/m2/day 15 23.808

3 Crystal creek

(Ulanowicz, 1986)

Carbon mg/m2/day 21 52.53

4 Pine forest Nitrogen kg/ha/year 6 1

5 North Sea pelagic

marine ecosystem

(Steele, 1974)

Energy kcal/m2/year 10 1

6 Generic euphotic

oceanic ecosystem

(Webster et al., 1975)

Mineral kg/ha/year 6 1

7 Open ocean mixed layer Carbon g/m2/year 6 1

8 Puerto Rican rain forest

(Jordan et al., 1972)

Calcium kg/ha/year 4 1

9 Generic salt marsh

ecosystem (Webster

et al., 1975)

Mineral kg/ha/year 6 1

10 Silver Springs (Odum,

1957)

Energy kcal/m2/year 5 1

11 Freshwater stream

ecosystem (Webster

et al., 1975)

Mineral kg/ha/year 6 1

12 Temperate forest

(Webster et al., 1975)

Mineral kg/ha/year 6 1

13 Tropical forest (Webster

et al., 1975)

Mineral kg/ha/year 6 1

14 Tropical rain forest

(Edmisten, 1970)

Nitrogen g/m2/day 5 1

15 Generic tundra

ecosystem (Webster

et al., 1975)

Mineral kg/ha/year 6 1

16 Upper Chesapeake Bay

mesohaline ecosystem

Carbon million ton/

year

12 1

17 Temperate estuary

(Baird and Milne, 1981)

Carbon g/m2/year 13 1

18 Cypress dry season

(Ulanowicz et al., 1997)

Carbon g/m2/year 68 192.49

Continued
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Table 3.1 Fifty-Two Ecological Networks—cont’d

ID Models

Flow

Currency Flow Unit #Compartment

Mean

Storage

19 Cypress wet season

(Ulanowicz et al., 1997)

Carbon g/m2/year 68 196.93

20 Florida Bay trophic

exchange Matrix dry

season (Ulanowicz

et al., 1998)

Carbon mg/m2/year 125 6.0103

21 Florida Bay trophic

exchange matrix wet

Season (Ulanowicz

et al., 1998)

Carbon mg/m2/year 125 6.3141

22 Everglades Graminoids

dry season (Ulanowicz

et al., 2000)

Carbon g/m2/year 66 63.716

23 Everglades Graminoids

wet season (Ulanowicz

et al., 2000)

Carbon g/m2/year 66 65.42

24 Mangrove estuary dry

season (Ulanowicz

et al., 1999)

Carbon g/m2/year 94 81.234

25 Mangrove estuary wet

season (Ulanowicz

et al., 1999)

Carbon g/m2/year 94 81.167

26 Bothnian Bay

(Sandberg et al., 2000)

Carbon g/m2/year 12 223.54

27 Bothnian Sea

(Sandberg et al., 2000)

Carbon g/m2/year 12 108.3

28 Charca Lagoon

(Almunia et al., 1999)

Carbon mg/m2/year 21 1

29 Chesapeake Bay

mesohaline network

(Baird and Ulanowicz,

1989)

Carbon mg/m2/year 36 2.7685

30 Bothnian Sea

(Sandberg et al., 2000)

Carbon g/m2/year 5 1

31 Crystal River (control)

(Ulanowicz, 1986)

Carbon mg/m2/day 21 55121

32 Crystal River (thermal)

(Ulanowicz, 1986)

Carbon mg/m2/day 21 35972

33 Ems estuary (Baird

et al., 1991)

Carbon mg/m2/day 15 3.87E

+05

34 English Channel

(Brylinsky, 1972)

Energy kcal/m2/day 6 1
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Table 3.1 Fifty-Two Ecological Networks—cont’d

ID Models

Flow

Currency Flow Unit #Compartment

Mean

Storage

35 Narragansett Bay

(Monaco and

Ulanowicz, 1997)

Carbon mg/m2/year 32 8476.3

36 Georges Bank (Link

et al., 2008)

Wet

weight

g/m2/year 31 10.06

37 Gulf of Maine (Link et al.,

2008)

Wet

weight

g/m2/year 31 10.374

38 Lake Findley (Richey

et al., 1978)

Carbon g/m2/year 76 0.59175

39 Lake Oneida (post -ZM)

(Miehls et al., 2009a)

Carbon g/m2/year 74 0.2866

40 Lake Oneida (pre-ZM)

(Miehls et al., 2009a)

Carbon g/m2/year 80 1.645

41 Lake Quinte (post-ZM)

(Miehls et al., 2009b)

Carbon g/m2/year 74 0.30345

42 Lake Quinte (pre-ZM)

(Miehls et al., 2009b)

Carbon g/m2/year 4 1

43 Lake Wingra (Richey

et al., 1978)

Carbon g/m2/year 5 1

44 Middle Atlantic Bight

(Link et al., 2008)

Wet

weight

g/m2/year 32 10.188

45 Marion Lake (Richey

et al., 1978)

Carbon g/m2/year 5 1

46 Mirror Lake (Richey

et al., 1978)

Carbon g/m2/year 5 1

47 Northern Benguela

upwelling (Heymans

and Baird, 2000)

Carbon mg/m2/day 24 9998.4

48 Oyster reef (Dame and

Patten, 1981)

Energy kcal/m2/day 6 518.66

49 Southern New England

(Link et al., 2008)

Wet

weight

g/m2/year 33 8.4498

50 Somme estuary

(Rybarczyk and

Nowakowski, 2003)

Carbon mg/m2/day 9 24.368

51 Swartkops estuary

(Baird et al., 1991)

Carbon mg/m2/day 15 1.34E

+05

52 Neuse grand average

(Christian and Thomas,

2000)

Nitrogen mmol/m2/

season

7 825.03
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mean, median, standard deviation, and CV) for four basic measures: (i) number of

compartments, (ii) number of links, (iii) TST, and (iv) TSS. Twenty-one out of

52 models do not contain storage data. These models are indicated with a mean stor-

age value of 1 in Table 3.1, and are excluded from our analysis for storage-based

measures.

3.4 METHODS
All 40 system-wide measures are computed for the 52 ecosystem models shown in

Table 3.1. To study the relationships among the 40 measures, we conduct pairwise

comparisons using Pearson product–moment correlation coefficient, which mea-

sures the linear correlation between two variables. It is computed as the covariance

of the two variables divided by the product of their standard deviations. This corre-

lation ranges from$1 to 1. As it approaches zero, there is less of a linear relationship

(closer to uncorrelated). The closer the coefficient is to 1 (or $1), the stronger the

positive (or negative) linear correlation between two variables.

For the 40 measures, there are totally Cð40,2Þ¼ 780 possible pairwise rela-

tions. Figure 3.2 shows the histogram of Pearson correlation coefficients for these

780 pairwise relations. About 7.44% (58) and 0.26% (2) of the pairwise relations

have Pearson correlations larger than 0.9 and less than$0.9, respectively, indicating

a significant presence of strong linear correlations among the 40 system-wide mea-

sures. However, due to the large number of pairwise relations, it is not feasible to

cover each such pair individually. Instead, we use cluster analysis to represent

and visualize the relationships among these measures.

Cluster analysis is a widely used method to partition a set of objects into two or

more clusters based on their similarities ( Johnson and Wichern, 2002). The set of

objects in this work are the 40 system-wide measures. Measures grouped in the same

cluster are more similar to each other than those in different clusters. The similarity

of measures is assessed by a distance metric defined between the measures. Smaller

distance between two measures indicates higher similarity. This distance metric can

be defined in various ways, such as the Euclidean distance, 1–correlation, and 1–abs

(correlation). The notation “abs(x)” represents the absolute value of x. In this work,

Table 3.2 Summary Statistics of Basic Measures of 52 Ecosystem Models

Measures Min Max Mean Median sd

CV (sd/

Mean)

#Compartments 4 125 29.73 15 32.84 1.10

#Links 5 1969 312.25 37 530.61 1.65

TST 0.32 6:01(106 2:61(105 2:64(103 1:07(106 4.10

TSS 21.2 5:81(106 3:32(105 1:30(103 1.10(106 3.31

58 CHAPTER 3 System-wide measures in ecological network analysis



we adopt 1–abs(Pearson correlation) as the distance between any two measures, be-

cause smaller values of 1–abs(Pearson correlation) indicate higher (either positive or

negative) correlation or similarity between two measures.

After selecting the distance metric, various methods are available to build clus-

ters, such as single linkage, complete linkage, average linkage, Ward’s method, and

centroid method. There is no definitive answer as to which method is the best choice,

as each method has its own advantages and disadvantages. For this work, we use the

simplest and most efficient method, single linkage, also known as the nearest neigh-

bor technique. This method is capable of finding irregular-shaped clusters, yet it suf-

fers from the so-called chaining effects ( Johnson and Wichern, 2002). The defining

feature of this method is that the distance between clusters is specified as the distance

between the closest pair of measures in these two clusters. The procedure works as

follows:

1. Start with 40 clusters where each measure is one cluster. The distance between

any two measures is 1–abs(Pearson correlation).

2. Place the two measures with the smallest distance into a single cluster.

3. Define the distance between two clusters as the distance between the closest pair

of measures from these two clusters.

4. Merge the two nearest clusters into a single cluster.

5. Repeat steps 3 and 4 until all 40 measures are within one cluster.

Figure 3.3 shows the cluster dendrogram using 1–abs(Pearson correlation) as the

distance metric. The y-axis represents the distance between clusters (or between

measures if there is only one measure in each cluster). Letter r will be used to rep-

resent the Pearson correlation coefficient of two measures.
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The histogram of Pearson product–moment correlation coefficients of all pairwise relations.
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FIGURE 3.3

Cluster dendrogram of system-wide measures based on the following distance metric: 1–abs

(Pearson correlation). At a distance of 0.1, all clusters with more than one measure are

bordered with rectangles.
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3.5 OBSERVATIONS AND DISCUSSION
Figure 3.3 shows measures grouped in rectangles based on how similar they are

distance< 0:1ð Þ. We observe that each cluster contains only a single type of mea-

sure: structure-based, flow-based, or storage-based. In other words, there is no cross

correlation between different measure types. Therefore we discuss our observations

of each measure type separately.

3.5.1 CLUSTERS OF STRUCTURE-BASED MEASURES

There are two clusters that contain structure-based measures. The larger one has four

measures: link density, degree diversity, #compartments (network size), and #links.

The high correlations among these four measures indicate that with increase of net-

work size, link density, degree diversity, and #links increase as well. It is expected

that degree diversity and #links increase with network size. However, it is not totally

clear why link density increases with network size.

Link density and another related measure, connectance, have been studied exten-

sively. There is a debate as to how they change with network size. For models in

Table 3.1, Figure 3.4 shows that the link density (m/n) increases with network size,

while the connectance (m/n2) decreases slightly with network size. This indicates the

total number of links (m) increases faster than the network size n, but slower than n2.

An important observation about this four-measure cluster is that only these four

structure-based measures are significantly affected by network size. Using artificial

networks, Fath (2004) shows how four flow-based system-wide measures (amplifi-

cation, homogenization, synergism, and indirect effects) change with network size.

However, our statistical analysis based on actual ecosystem models shows that am-

plification (r¼$0.24), homogenization (r¼$0.31), synergism (r¼$0.44), and in-

direct effects (r¼$0.34), have weak relationships with network size.

3.5.2 CLUSTERS OF FLOW-BASED MEASURES

In Figure 3.3, there are totally five clusters of flow-based measures. Measures in two

clusters (ascendency/capacity and overhead/capacity, internal ascendency/capacity,

and internal overhead/capacity) have perfect negative linear correlations (r¼$1),

which is expected due to their formulation.

The largest cluster contains 11 measures, including mean throughflow, internal

overhead, total internal flow, TST, total system throughput, internal ascendency, ca-

pacity, overhead, internal capacity, total boundary input, and ascendency. Five of

these measures (mean throughflow, total internal flow, TST, total system throughput,

and total boundary input) are either the sum or the mean of some flow rates in the

system; therefore, their high correlation is expected.

Interestingly, capacity, ascendency, overhead, and their internal versions are also

classified into this cluster. The scatterplot in Figure 3.5a clearly shows that capacity,

ascendency, and overhead increase linearly with respect to total system throughput.
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Similarly, there exist strong positive linear relations between internal versions of ca-

pacity, ascendency, and overhead with respect to total internal flow (Figure 3.5b).

Ulanowicz (2011) points out that ascendency quantifies the overall constraints of

the ecosystem, or how tightly the network is organized, and overhead gauges how

unconstrained the flows remain, or how flexible the system remains to reconfigure

itself. Due to their high correlations with total system throughput, ascendency and

overhead may not be as useful in quantifying the network organization as

Ulanowicz (2011) indicates. For example, different networks with the same total
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(a) Link density versus #compartments; (b) connectance versus #compartments.
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system throughput may have very different network organizations, yet this difference

will not be captured by ascendency or overhead.

On the other hand, according to Ulanowicz (2009, 2011), the ratio ascendency/

capacity (equivalent to average mutual information/flow diversity) represents the de-

gree of organization and overhead/capacity (equivalent to residual diversity/flow di-

versity) represents the degree of flexibility. Our statistical analysis shows that these

two ratios truly provide new information, and are not correlated with system through-

flow and any other measure.
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FIGURE 3.5

(a) Capacity, ascendency, and overhead versus total system throughput; (b) Internal

capacity, internal ascendency, and internal overhead versus total internal flow.
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The second cluster includes two measures: average path length and the ratio of

indirect to direct effects (I/D). Higashi and Patten (1986, 1989) and Patten (1991)

indicate that indirect effects increase with network size, connectance, FCI, and

TST. However, according to our analysis, network size (r¼$0.20), connectance

(r¼0.20), and TST (r¼$0.04) have very weak correlations with I/D ratio. Pearson

correlation coefficient for FCI is r¼0.67. Actually, average path length (r¼0.99) is

the measure that has the strongest correlation with I/D. We should also note that

average path length (r¼$0.19) also does not change much with network size. This

is mainly because the number of trophic levels in most durable natural ecosystems is

about four (Matsuno and Ono, 1996). Without considering cycling, the maximum

path length for ecosystems of any size should be around four as well. The average

path length should be even smaller. Thus, the increase of path length is not due to

increasing network size, but due to the occurrence of cycling.

3.5.3 CLUSTERS OF STORAGE-BASED MEASURES

The only storage-based cluster contains three measures: system residence time (sys-

tem RT), TSS, and mean storage. Strong linear correlation (r¼0.99) between TSS

and mean storage is expected due to their formulations. High correlation between

system residence time and TSS (r¼0.93) indicates that the flow material tends to

stay longer in the system as system storage increases, which makes sense. The high

correlation between system residence time and TSS agrees with recent findings

(Schramski et al., 2015) that the residence time of carbon in both individual organ-

isms and entire ecosystems increases with increasing system biomass.

These three storage-based measures (TSS, mean storage, and system RT) are

analogous to three flow-based measures (TST, mean throughflow, and average path

length). The key difference is that the former three take into account the residence

time in each compartment, while the latter three do not. However, TSS (r¼$0.05) is

almost uncorrelated with TST. Mean storage and mean throughflow are also uncor-

related (r¼$0.06). As we have pointed out earlier, there is no significant cross cor-

relation between structure-based, flow-based, and storage-based measures. Other

structure-based and flow-based measures are also not correlated with these three

storage-based measures. This weak correlation indicates that storage introduces

new information, and it is not feasible to estimate storage values using flow rates

or network topology. Interestingly, few system-wide measures in existence utilize

storage values. Therefore, future work focusing on developing novel storage-based

measures may help capture new holistic properties of ecosystem models.
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