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13.1 Introduction
Ecological networks are widely used to represent the biotic interactions in an ecosystem,

such as the movement of biomass in consumer-resource systems, transfer of energy in

food webs, and carbon cycling in the biosphere. Ecological network models are built to

describe the flow of biomass or energy within ecosystems. Network Environ Analysis

(NEA) (Patten, 1978; Fath and Patten, 1999) formulates system-wide properties to

describe various relations in an ecosystem. For example, cycling index quantifies how

much of the energy or biomass is recycled and throughflow analysis measures how the

environmental inputs contribute to the throughflow of each compartment. Computation

of most of these properties relies on formulations based on linear algebra. These algebraic

formulations are only applicable to ecosystems at steady state, which are rarely seen in

the environment. Dynamic ecosystems are more common as ecosystems are often driven

by seasonal changes and as unexpected regime shifts or environmental impacts can

occur. The purpose of this work is to extend the applicability of these useful but limited

properties to dynamic ecosystem models.

Network Particle Tracking (NPT) is an individual-based method that simulates system

dynamics. It works like an in silico version of tracer experiments by simulating pathways

of traced elements. As an alternative to algebraic formulations of NEA properties, we

construct simulation-based formulations that compute the same NEA properties. While

these new parallel definitions for NEA properties agree with conventional methodologies

on steady-state systems, they are also applicable to dynamic models.

In this chapter, we first provide a brief introduction for NEA, followed by a description

of how NPT simulates ecosystem models. We then focus on formulating NPT-based
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definitions for various ecosystem properties such as cycling index, throughflow analysis,

and storage analysis. Finally, we discuss how NPT-based definitions can be used to

compute dynamic network properties, and demonstrate this methodology on storage

analysis.

13.2 Network Environ Analysis
Leontief (1951, 1966) developed the input–output analysis to analyze the interdepen-

dence of different branches of national economy. This analysis was introduced to ecology

by Hannon (1973). NEA (Fath and Patten, 1999; Patten, 1978) uses the same idea of

economic input–output analysis to study environmental systems. Ecosystem models are

represented as individual compartments connected by pairwise links. NEA methodology

formulates various measures that describe the relationship between these compartments

and the environment. NEA consists of two main analyses: (i) structural analysis and (ii)

functional analysis. The former investigates the direct and indirect connections from one

compartment to another, and is also the basis for the functional analysis. The functional

analysis quantifies the relationship between the compartments and the environment and

includes throughflow, storage, and utility analyses.

NEA works with compartmental models representing ecosystems. Figure 13.1 shows

a hypothetical system with three compartments. Each circle represents one compart-

ment, which corresponds to a part of the system. The arrows represent environmental

inputs/outputs or flows between compartments. Depending on what ecological process

is modeled, the flow currency could be biomass, energy, or a specific nutrient or

element.

NEA stores both the qualitative and quantitative information of the network in

matrices and vectors. For the simple model in Fig. 13.1, the environmental inputs (z),

outputs (y), and storage values (x) are defined as follows:

X1=50 X2=20
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FIGURE 13.1 A hypothetical three-compartment ecosystem model consisting of Producers, Consumers, and

Nutrient poolwith stocks X1¼ 50, X2¼ 20 and X3¼ 5 units, respectively. These three compartments are connected
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zi : Rate of enviornmental input to compartment i

yi : Rate of environmental output leaving compartment i

xi : Storage value of compartment i

Adjacency matrix A consists of zeros and ones. Aij indicates if there exists a direct flow

from compartment j to compartment i. A matrix represents all connections within the

system. In addition to the connectivity information, flow matrix F describes how strong

the connections are. Fij denotes the rate of direct flow from j to i. A and Fmatrices for the

simple ecosystem model in Fig. 13.1 are:
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Throughflow Ti is the rate of material (or energy) moving through compartment i. It is

defined as the sum of flows to compartment i from other compartments and the envi-

ronment (T in
i ). For a system at steady state, it equals the sum of flows from compartment i

to other compartments and the environment (Tout
i ):

T in
i ¼

X

n

j¼ 1

Fij þ zi Tout
i ¼

X

n

j¼ 1

Fji þ yi

For this simple model,

Tin ¼ Tout ¼

2

4

105
25
15

3

5

Finally, total system throughflow (TST) is defined as the sum of all compartmental

throughflows in the system:

TST ¼
X

n

i¼ 1

Ti ¼ 105þ 25þ 15 ¼ 145

Current NEAmethodology and various properties involved are developed for steady-state

systems. All the matrices and vectors involved in the computation of these properties are

required to be constants, not functions of time. Little work exists on NEA applied to

evolving systems (Hippe, 1983; Shevtsov et al., 2009). Hippe (1983) states “it would be

desirable to develop a nonlinear environ analysis for either general or specific classes of

nonlinear systems. Although such an analysis would not be isomorphic to the analysis

presented herein, certainly there would exist analogous formulations of concepts

between these two types of analysis.” Shevtsov et al. (2009) describes a methodology

applicable to dynamic systems; however, there are limitations in its accuracy and
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convergence. The methodology presented in our work is general, and is valid for models

with linear or nonlinear flows, and time-invariant or time-dependent coefficients.

13.3 Network Particle Tracking: An Individual-Based
Methodology

NPT is an individual-based simulation method. Energy (or mass) entering the system is

divided into small packets, and eachpacket is labeled and tracked in time as it flows through

thenetwork. Figure 13.2 uses a simple three-compartmentmodel to illustrate theworking of

NPT. It starts with breaking initial stocks or input flows into discrete packets, which we call

“particles”. For example, for a carbonflowmodel, a particle could represent a single C atom,

or 1 gramofCarbon. This choice is left to themodeler. The smaller the particle, themore the

computational resources required for the simulation. In principal, it is preferred to use the

smallest possible unit allowed by computational resources. Based on flow rates, NPT

determines which flow is likely to occur andwhen. A particle is then chosen randomly from

the donor compartment and introduced to the recipient compartment. As ecosystems are

open systems, new particles will enter the system. So if the chosen flow is an environmental

input, a new particle is labeled and introduced to the recipient compartment. NPT simu-

lation output includes the history of the movements of all particles within the system.

Figure 13.3 shows a partial NPT simulation output for the three-compartment system

(from Fig. 13.2), which includes the pathway, flow time, and residence time data. The
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Entered Phyto. at time =21.2 units.

Left Fish at time= 139.7 units.

Moved to Fish at time =124.6 units.

FIGURE 13.2 Three-compartment model depicting particles and their flow information in the system. For color

version of this figure, the reader is referred to the online version of this book.
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pathway of a particle is defined as an ordered list of compartments visited by that particle.

Flowtimedata showswheneachparticleflows fromonecompartment (or theenvironment)

to another compartment (or the environment). Residence time data records how long

a particle stays in a compartment it visits. For example, Fig. 13.3 represents the fact that

“Particle 12” entered Phytoplankton (compartment 1) at time ¼ 21:2, left at time ¼ 34:5,

and spent 13.3 time units in Phytoplankton. The time unit is determined by the modeler.

NPT is a discrete and stochastic method with several advantages over ordinary

differential equation (ODE) models. However, ecological networks are often modeled

using ODEs, which are deterministic and continuous. The same initial conditions for an

ODE model will always generate exactly the same outcome, which is usually not the case

in real life. On the other hand, stochastic models represent the inherent fluctuations in

real-life systems by adding noise derived from a probability distribution, and therefore

outcomes are not unique.

Another issue with the ODE models is that all flows are treated as continuous

processes, which is not always appropriate. Take the simple food chain as an example.

Tree/Deer/Wolf

Assuming the deer could obtain leaves almost anytime, the flow from Tree to Deer can be

approximated by a continuous process. However, it is not appropriate to regard the flow

from Deer to Wolf as continuous since wolves attack deers occasionally. Once they

succeed, a large amount of energy is moved from Deer toWolf in a short period of time. It

is preferable to model such rare and instantaneous processes with discrete, rather than

continuous models.

NPT is based on the Gillespie algorithm (Gillespie, 1977), which is an exact stochastic

simulation method. As described earlier, it discretizes material flows as movements of

particles among compartments. For the simple food chain above, it is possible to

represent the flow from Tree toDeer andDeer toWolfwith small and large-sized particles,

respectively. In other words, the flow from Tree toDeer could bemodeled using small-size

particles (e.g., 1 gram of Carbon), while the flow unit from Deer toWolf could be modeled

1 2Particle Pathway

Flow time

*

Residence time

Particle *1*Pathway

Flow time

Residence time

12

3 *

21.2 34.5 124.6 139.7

13.3 90.1 15.1

Particle Pathway * 1 2 3 1 3 *

Flow time 31.2 50.3 79.8 123.5 131.6

19.1 29.5

98.0

18.2 25.5 8.1

212

43

3 1 2 3

30.4 50.3  65.8 88.4 115.3 140.2

19.9 15.5 22.6 26.9 24.9

Residence time

FIGURE 13.3 Partial NPT output for three-compartment ecosystem in Fig. 13.2, including pathway, flow time, and

residence time data. The numbers of 1, 2, and 3 correspond to compartments Phytoplankton, Zooplankton, and Fish.

For color version of this figure, the reader is referred to the online version of this book.
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as numerous small particles bound together, to represent the entire deer. This modified

model represents the food chain better than just moving all particles independently.

NPT is a stochastic method compatible with the master equation (Gillespie, 1992,

2000). In other words, the mean of many NPT results agrees with differential equation

solution. Therefore, studies based on NPT simulations, which are stochastic and discrete,

are compatible with the conventional methodologies, which are often continuous and

deterministic.

13.4 Cycling Index
Cycling index is an essential ecological indicator used for ecosystem analysis. It measures

how much of the environmental input is cycled before exiting the system. Finn’s cycling

index (Finn, 1978) is widely accepted as an accurate measure of cycling within an

ecosystem. The definition of Finn’s cycling index relies on throughflow analysis. There-

fore, here, we briefly introduce the throughflow generatingmatrixN, but postpone amore

detailed description to the next section. Nij represents the throughflow generated at i by

per-unit input at j.

By definition, diagonal values of throughflow generating matrix Nii represent the

amount of throughflow generated at compartment i by one unit input into compartment

i. This one unit input into compartment i contributes to its throughflow (Ti) at least once.

Therefore, if Nii is larger than 1, then Nii # 1 represents the amount of throughflow

generated at compartment i through cycling. Finn (1977, 1978) defines his cycling index

based on this idea as the fraction of the total system throughflow (TST) that is due to

cycling (TSTc). For an ecosystem model at a steady state, Finn’s cycling index (FCI) is

defined as follows:

FCI ¼
TSTc

TST
¼
X

n

i¼ 1

%

Ti

TST

Nii # 1

Nii

&

(1)

Here, n is the total number of compartments in the ecosystem model. By definition, the

range of TSTc values are between zero and TST, therefore FCI varies between zero and

one. This definition of FCI is applicable only to systems at steady state, where T, N, and

TST are constants. We define an alternative, simulation-based definition for FCI, which is

applicable to dynamic ecosystems as well. This definition is more intuitive, and does not

require throughflow analysis or linear algebra.

NPT simulations generate the pathway data of individual particles within the system.

Each compartment visit of a particle contributes to TST. Therefore, using the pathway data,

TST represents the total number of visits to compartments by particles. And TSTc is

computed as the number of compartments visited by a particle more than once. Therefore,

we can quantify cycling in an intuitive manner using particle pathways. Table 13.1

demonstrates the computation of FCI based on the partial pathway data provided in

Fig. 13.3.
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In Table 13.1, the second column lists the compartments visited by each particle, and

we underline compartments visited by a particle more than once. TST values are

computed by counting the number of compartments visited by each particle. TSTc values

are computed by counting the number of underlined compartments, which represent

throughflows due to cycling. Therefore, the simulation-based cycling index is computed

as: FCI ¼
TSTc

TST
z

4

13
¼ 0:31.

The result of this computation is based on the specific pathway data used, and

therefore different pathway data sets will produce different results. In general, the larger

the pathway data set, the higher the accuracy of the computed cycling index. Since NPT is

based on a stochastic algorithm, the pathway data generated for each simulation will be

different. However, as the pathway data size increases, the simulation-based FCI

converges to its conventional definition in Eqn (1).

Kazanci et al. (2009) demonstrates the accuracy and convergence of the NPT-based

FCI using the Hubbard Brook temperate forest ecosystem model (Finn, 1980). The flow

currency in this model is Calcium, which explains the relatively high cycling index of

0.797. Figure 13.4 shows NPT-based FCI values computed for three different simulations.

Table 13.1 Computing of an Approximate Cycling Index for the
Three-Compartment Model, Using Partial Pathway Data in Fig. 13.3

Particle Pathway TST TSTc

12 1 2 3 3 0

43 1 3 1 2 3 5 2

212 1 2 3 1 3 5 2

Total 13 4
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FIGURE 13.4 Finn cycling index is computed using the pathway data generated by three different NPT simulations

for Hubbard Brook temperate forest ecosystem. For color version of this figure, the reader is referred to the online

version of this book.
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We observe that as pathway data size increases, the NPT-based FCI converges to the value

computed with the conventional methodology, shown with the horizontal dotted line.

The agreement of the two definitions reveals the meaning of FCI on an individual-based

context.

13.5 Throughflow Analysis
Throughflow analysis investigates the relationship between environmental inputs and

compartmental throughflows. Throughflow analysis consists of the through-

flowgenerating matrix N, which is a linear mapping from the input vector z to the

throughflow vector T, as shown in Nz ¼ T . Throughflow analysis is an essential part of

NEA, and is the basis for other system-wide properties such as cycling index (Finn, 1977,

1978, 1982) and indirect effects ratio (Higashi and Patten, 1986; Patten, 1986, 1985).

Nij represents the throughflow generated at compartment i by one unit environmental

input at compartment j. Using NPT, we could regard this unit input as one particle, and

simulate its movement within the system. The definition then becomes the number of

times a particle goes through compartment i given that it enters the system at j. Since NPT

simulations provide pathways of particles as shown in Fig. 13.3, such computation

becomes feasible. To compute Nij, we use all pathways starting at j, which correspond to

those particles entering the system at j. Then, we count the occurrences of compartment i

in these pathways. The average number of occurrences of i for all particles defines the

NPT-based Nij.

However, for many ecosystem models, not every compartment receives environ-

mental input. This is a problem because Nij cannot be computed unless compartment j

receives environmental input. To compute the full Nmatrix, we use the fact that whether

a particle enters a compartment from the environment or from another compartment, it

does not matter and it will behave the same way afterwards. In other words, we need not

make any distinction between environmental inputs and inter-compartmental inputs to

compute N. Therefore, we can treat each particle pathway as a set of multiple particle

pathways as shown in Fig. 13.5. We name this new set contracted pathways.

This increase in the number of effective pathways also increases the accuracy of

computation of N. The application of this expansion to all three pathways in Fig. 13.3

results in 10 new pathways, yielding 13 pathways in total. Using these 13 contracted

pathways, we compute N31 in Table 13.2. Five of these 13 contracted pathways start with

compartment 1. Compartment 3 appears seven times in these five contracted pathways,

then N31 is computed as
7

5
¼ 1:4.

This method can be generalized to compute the entire N matrix based on a larger

pathway data set that belongs to any compartmental ecosystem model, as follows:

Nij ¼
1
'

'Pj

'

'

X

p˛Pj

number of occurances of compartment i in p (2)
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where Pj is a list of contracted pathways that starts with compartment j, and jPjj repre-

sents the number of contracted pathways on this list. The larger the value jPjj, the more

accurate the computation of NPT-based throughflow generating matrix N.

Similar to NPT-based FCI, the NPT-based N matrix will converge to its conventional

definition as more pathway data is used in its computation. Matamba et al. (2009)

includes similar convergence and accuracy information for NPT-based N as we show for

cycling index in Fig. 13.4. However, the method presented in this chapter is based on

contracted pathways, and is an improved version of the methodology presented in

Matamba et al. (2009). This new method converges much faster using less pathway data,

increasing accuracy. Similar to FCI, conventional throughflow analysis is only applicable

to steady-state ecosystem models. The NPT-based methodology can compute N matrix

for pathway data that belong to dynamic systems, eliminating this limitation. Further-

more, this alternative definition of the N matrix is more intuitive, and confirms the

conventional algebraic formulation of N.

13.6 Storage Analysis
Storage analysis (Matis and Patten, 1981) investigates the relation between input flows

and compartment storage values. The storage generating matrix S represents a linear

*1*

*
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**

**

*1*

*

3 1 2 3

3

3 1 2 3

3 1 2 3

1 2 3

2 3

FIGURE 13.5 Pathway of particle 43 from Figure 13.3 is expanded into five separate contracted pathways. Such

expansion enables us to compute Nij and Sij (in next section) even if there is no environmental input into some

compartments. For color version of this figure, the reader is referred to the online version of this book.

Table 13.2 Computation of N31 Using the Partial NPT Simulation
Output from Fig. 13.3

Particle Pathways

Contracted Pathways

Starting with 1

Number of

Occurrences of 3

12 1 2 3 1 2 3 1

43 1 3 1 2 3 1 3 1 2 3 2

1 2 3 1

212 1 2 3 1 3 1 2 3 1 3 2

1 3 1

Total 5 7
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mapping between the environmental input rates (z) and the storage values (x) of each

compartment at the steady state, which is described by the equation Sz ¼ x. For

instance, given one unit of mass or energy input to a system at compartment j, Sij
represents how much storage is generated at compartment i as a result.

Storage analysis is conceptually the same as the throughflow analysis. Both measures

map the input to compartmental values. To compute throughflowgeneratingmatrixN, we

count the number of times a particle goes through a compartment using the pathway data.

In storage analysis, the number of visits is replaced by the particle’s total residence time in

that compartment. The longer a particle resides in a compartment, the larger its contri-

bution to the storage of that compartment. NPT simulations provide not only the list of

compartments a particle visits, but also the duration of each visit. This additional infor-

mation enables the computation of the S matrix in a similar way to that of the N matrix.

To compute Sij, we use all pathways starting at j, which correspond to those particles

entering the system at j. Then, we sum up their residence times at i. We compute Sij as the

average residence time at i for all particles.

Similar to throughflow analysis, the process of computing the Smatrix is slightly more

involved because an ecosystem model will rarely have environmental inputs into all its

compartments. For example, we cannot compute S32 if no particle enters compartment 2

from the environment. To solve this problem, we carry out the computation of S on

contracted pathways like what we did for computing N matrix. Since all compartments

receive an environmental input and/or at least one inter-compartmental input, it is

possible to compute the full S matrix for any ecosystem model.

To demonstrate the NPT-based definition of S, we compute S31 using the pathway data

provided in Fig. 13.3. First, we determine how many contracted pathways start with

compartment 1. Table 13.2 shows that five contracted pathways start with compartment 1.

Using the residence time information in Fig. 13.3, we compute the total residence time at

compartment 3 for these five contracted pathways. For example, the first contracted

pathway (/1/2/3/%) goes through compartment 3 once, and its residence time at

compartment 3 is 15.1 timeunits. The second contracted pathway (/1/3/1/2/3/%)

visits compartment 3 twice, staying for 15.5 and 24.9 time units, respectively. So, its resi-

dence time is the sum of these two values. Then, S31 is computed as follows:

S31 ¼
ð15:1Þ þ ð15:5þ 24:9Þ þ ð24:9Þ þ ð18:2þ 8:1Þ þ ð8:1Þ

5
¼ 22:96

In general, we compute S as follows:

Sij ¼
1
'

'Pj

'

'

X

p˛Pj

sum of residence times at compartment i in p (3)

where Pj is a list of contracted pathways that start with compartment j. jPjj represents the

number of contracted pathways on this list. The larger the value of jPjj, the more accurate

the computation of NPT-based S. Convergence of the NPT-based S matrix to the

conventional Smatrix is discussed in Kazanci andMa (2012), and the results are similar to

that of the throughflow analysis and FCI.
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13.7 Dynamic Network Environ Analysis
In previous sections, we demonstrated the NPT-based methodology to study several

network properties. NPT-based definitions of network properties depend solely on the

output of an NPT simulation, which consists of particle pathways and residence times.

This simulation may belong to an ecosystem at a steady state, in transition to a steady

state, oscillating between states, or even a chaotic system. Therefore, NPT-based defi-

nitions can be computed for dynamic ecosystems, unlike the conventional definitions of

these measures, which are only limited to steady-state systems.

The NPT-based definitions introduced previously only allow us to compute constant

values that represent the “average” behavior of a dynamic system over a time interval. In

this section, we describe how to extend NPT-based definitions to compute time-varying

network properties. We demonstrate this new technique on storage analysis. However,

the process described here to extend the applicability of storage analysis to dynamic

systems can be adapted to any NPT-based ecosystem property, including throughflow

analysis and cycling index.

Our aim is to compute a true dynamic storage analysis matrix function SðtÞ, where SðaÞ

represents the instantaneous storage generating matrix at time t ¼ a. To construct an

NPT-based formulation for SðtÞ, a rigorous definition for SijðtÞ is needed. Let Sijð½a;b)Þ

represent the amount of storage created at compartment i over time (½a;N)), by per-unit

input into compartment j over the time interval ½a;b). Then, we define the dynamic

storage-generating matrix function SðtÞ as follows:

SðtÞ ¼ lim
h/0

Sð½t # h; t þ h)Þ (4)

In this definition, the storage contribution can occur at anytime. However, since envi-

ronmental models are open and dissipative systems, all particles leave the system sooner

or later. Therefore, we can revise the definition of the above Sijð½a;b)Þ and use an arbitrary

large number M instead of N (½a;M )instead of ½a;N)).

Utilizing this new definition for dynamic storage analysis, it is now possible to

compute SðtÞ based on the output of NPT simulations. Similar to numerical differential

equation solutions (e.g., Euler, Runge-Kutta, etc.), the NPT-based computation of SðtÞ

will employ a discrete time-step value ℎ. Smaller ℎ values are preferred for higher

accuracy. To compute an approximate value of SijðtÞ, we first set a time interval

½t # h; t þ h). Then, we label those particles that enter compartment j during this time

period, and sum up their storage contribution to i. A detailed description of this process

is as follows:

Step 1: Simulate the model with NPT until all the particles that move during the time

window [t # h; t þ h] leave the system.

Step 2: To compute SijðtÞ, we find out all contracted pathways of the form

/j///i/// %

where the first flow “/j ” occurs during ½t # h; t þ h).
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Step 3: To get an estimated value for SijðtÞ, we add up all residence times at i for each

contracted pathway, and divide this sum by the number of contracted pathways.

This value is the storage contribution (at i) of a unit environmental input at j.

To demonstrate this process, we compute S31 over the time interval ½30; 32) using the

sample NPT output provided in Fig. 13.3. The result will be an approximate value for S31 at

t ¼ 31. As described in Step 2, we focus on the contracted pathways of the form

/1///3/// %. Based on the three pathways shown in Fig. 13.3, we totally get 13

contracted pathways (three for particle 12, five for particle 43, and five for particle 212).

Five of these contracted pathways start with compartment 1 (one for particle 12, two for

particle 43, and two for particle 212), as shown in Table 13.2. For these five contracted

pathways, the first flow (/ 1 ) occurs at 21.2, 30.4, 65.8, 31.2, and 98.0 time units,

respectively. Only the second (/1/3/1/2/3/%) and the fourth

(/1/2/3/1/3/%) contracted pathways have their first flow time in the interval

½30; 32). For the second contracted pathway, Particle 43 enters compartment 1 at 30.4

time units and visits compartment 3 twice, staying for 15.5 and 24.9 time units, respec-

tively. For the fourth contracted pathway, Particle 212 enters compartment 1 at 31.2 time

units and visits compartment 3 twice also, staying for 18.2 and 8.1 time units, respectively.

Therefore:

S31ðt ¼ 31Þz
ð15:5þ 24:9Þ þ ð18:2þ 8:1Þ

2
¼ 33:35

In general, we compute SðtÞ as follows:

SijðtÞzSijð½t # h; t þ h)Þ ¼

P

p˛Pjðt#h;tþhÞ

%

Sum of residence times at
compartment i for pathway p

&

'

'Pjðt # h; t þ hÞ
'

'

(5)

where Pjðt # h; t þ hÞ is a list of contracted pathways that start with compartment j. This

list contains the particles that enter compartment j during the time interval ½t # h; t þ h).

jPjðt # h; t þ hÞj represents the number of items on this list.

We demonstrate the dynamic storage analysis computation using a simplistic lake

model with three compartments: Phytoplankton (P), Zooplankton (Z), and Fish (F). The

model accounts for the biomass flow among these compartments, simulating the annual

changes of lake biomass. The differential equation model is as follows:

_P ¼ 1000þ 600sinðt=8:3Þ # 2:5,10#5PZ # 2:5,10#5PF # 0:15P
_Z ¼ 2:5,10#5PZ # 2:5,10#5ZF # 0:1Z
_F ¼ 2:5,10#5PF þ 2:5,10#5ZF # 0:08F

(6)

The predatory relations among the three compartments are modeled using Lotka-Vol-

terra type (Lotka, 1925; Volterra, 1926) predator-prey equations (Berryman, 1992). The

Phytoplankton compartment gets time-varying environmental input

(1000þ 600sinðt=8:3Þ), which represents the fluctuating availability of nutrients and

sunlight with seasonal variation. Figure 13.6a shows the time course of compartmental

storage values. Successive peaks of storage values for the three compartments are in
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accordance with their trophic level in the lake ecosystem. Figure 13.6b shows one element

of the dynamic storage analysis matrix SðtÞ, computed using h ¼ 10 time units. We

observe that the period of oscillations in Fig 13.6a and b coincide with each other (about

50 time units). S11ðtÞ represents how much storage is generated at compartment 1

(Phytoplankton) by a unit input into itself. Comparing Figs 13.6a and b, we observe

a negative correlation between S11 and the storage value of Phytoplankton. This is

because any input received by the Phytoplankton at its lowest storage value is more likely

to be retained longer as its storage value increases over time. Similarly, at its peak storage

value, any input that the Phytoplankton receives is more likely to be lost as its storage

value declines. This inverse relation indicates that more complicated and insightful

results might be observed for larger systems with feedback cycles.

13.8 Conclusion
Individual-based studies of ecosystem flows are now within reach, thanks to sophisti-

cated mathematical methods, efficient computational algorithms, and advances in

computer technology. NPT simulations, although costly for extremely large models,

provide new ways to analyze ecosystems that were not possible before.

In this chapter, we presented an individual-based methodology to compute various

well-known system-wide ecological network properties. It turns out that this pathway-

based methodology is simpler and more intuitive as opposed to the conventional alge-

braic methods based on matrix power series. The agreement of both methodologies

verifies that the rather complicated algebraic formulations of the current NEA measures

do accurately reflect their intended meanings. However, this new approach is not an

alternative, but a parallel development to the existing methodology, extending the

applicability of useful ecosystem properties to include dynamic, time-varying systems.
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FIGURE 13.6 (a) Time course of biomass storage, simulated using the differential equations (see Eqn. (6)) for the

simplistic lake model. The oscillations are indicative of the seasonal changes. (b) The first entry of the dynamic

storage analysis matrix S11ðtÞ computed for this model. For color version of this figure, the reader is referred to the

online version of this book.
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The fact that numerous essential research problems such as environmental impacts,

climate changes, and regime shifts are centered around change increases the importance

and impact of the methodology presented here.

Stochastic simulations discussed in this chapter are based on ODE models, assuming

all flows leave the compartment following exponential distributions. However, this is not

an accurate description of real ecosystems, since the flow material often has to have

a time delay in each compartment. In other words, an input into a compartment rarely

leaves that compartment immediately because biological processes such as digestion and

respiration take time. For accurate representation of real models, more appropriate

probability distributions (e.g., log-normal distribution) can be used instead of expo-

nential distribution. Such changes can be easily incorporated into our stochastic models.

Another advantage of the NPT methodology is its ability to represent a wider range of

scenarios than ODE or PDE models. Since NPT is an individual-based method, hybrid

models where particles actually represent individual organisms, displaying intelligent

behavior, combining both thermodynamical and animal behavior can be built. However,

the compatibility between ODE and the NPT methodology will be broken as the ODE

models do not have such flexibility.

Not everyone has quick access to NPT simulations. Therefore, simulation-based

results are integrated into an experimental version of EcoNet (http://eco.engr.uga.edu),

a free online software for modeling, simulation, and analysis (Kazanci, 2007, 2009;

Schramski et al., 2010). This integration makes this rather computationally heavy method

accessible to a wide range of scientists.

For steady-state models, the conventional methodology is still preferable because it is

easier to use, simulations are not necessary, and the results are exact values. However, the

conventional method only computes average behavior, whereas the NPT-based method

incorporates noise and randomness, allowing the computation of standard deviation over

multiple simulations. The focus of the work presented here is to provide a more capable

alternative methodology still compatible with the currently available methods. For this

purpose, we only use the mean of stochastic simulations. However, the additional

information provided by the standard deviation and higher-order moments is an inter-

esting topic to investigate for future studies.
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