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H I G H L I G H T S

� Finn's cycling index (FCI) computes the cycled ecosystem flow.
� Develop a new storage-based cycling index (SCI).
� SCI utilizes both flow and residence time.
� SCI is vastly different from FCI for most systems.
� SCI is a preferable index for quantifying cycling.
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a b s t r a c t

Cycling is the process of reutilization of matter or energy in the ecosystem. As it is not directly
measurable, the strength of cycling is calculated based on mathematical models of the ecosystem. For a
storage-flow type ecosystem model, throughflow is the total amount of material flowing through all
system compartments per unit of time, while storage represents the total standing stock in the system.
Finn's cycling index (FCI) is widely used to measure the cycled throughflow, the proportion of
throughflow generated by cycling. Thus, although originally named after its author J.T. Finn, FCI can
also be called a “flow-based” cycling index. In addition to flow, storage plays an important role in
generating network properties, and therefore should be taken into account in measuring cycling. In this
paper, we investigate how much of the total standing stock of matter or energy in the ecosystem is due
to cycling, and formulate a storage-based cycling index (SCI), by utilizing an individual-based method to
simulate the system. SCI utilizes flow values used for FCI and takes into account residence time as well.
Therefore, SCI is a preferable index for quantifying cycling in ecosystems.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cycling of nutrients in ecosystems (Odum, 1971), such as carbon,
phosphorus and nitrogen cycles, has beenwidely investigated in the
last several decades. Despite some disagreement (Odum, 1971),
energy also cycles in the ecosystem (Patten, 1985, 1986), but not in
as significant amounts as matter. The cycling of energy is mainly
accomplished by the flow of energy in dead organic matter to
detritus, and back to the system through detritus feeders (Fath and
Halnes, 2007). Energy cycling can also be realized by the cannibal-
ism (the eating of one's own offspring), which occurs in a variety of
taxa, but is especially prevalent in fishes with parental care
(FitzGerald, 1992). Many studies on cycling in ecosystems (Fenchel
and Blackburn, 1979; DeAngelis, 1980) have been devoted to the
empirical description of specific cycling processes, such as the

detailed pathways of carbon, phosphorus and nitrogen cycles. In
this paper, we focus on quantifying this important measure for a
general ecosystem model of any conservative flow currency, such as
biomass, nutrients, energy, or a specific element such as carbon,
nitrogen or phosphorus.

According to Odum (1969), cycling is an indicator of maturity of
an ecosystem. It reveals the ecosystem's ability to retain matter or
energy, and to endure in the face of resource scarcity. Several
studies (DeAngelis, 1980; DeAngelis et al., 1989; Loreau, 1994)
indicate that increasing material cycling tends to increase the
probability that the system will be locally stable. Scotti (2008)
points out that increasing the amount of recycled matter tends to
increase transfer efficiency and minimize the ecosystem's depen-
dence on external supports. Depending on the flow currency, the
effect of cycling may be interpreted differently. For nitrogen and
phosphorus, it means efficient utilization of nutrients (Vitousek,
1982). For carbon, high cycling may indicate a stressed system
(Wulff and Ulanowicz, 1989). High cycling in a stressed system is
mostly through shorter cycles, while the similar cycling values
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tend to be realized through longer paths in mature systems (Baird
and Ulanowicz, 1993; Christian et al., 2005; Scotti, 2008). There-
fore, quantifying cycling in ecosystems is of great importance to
evaluate how well the ecosystem functions. However, measuring
the strength of cycling is not trivial. One reason is that, unlike
many other ecological indicators, the strength of cycling cannot be
measured directly, as its occurrence depends on indirect flows,
which are mediated or transmitted through other compartments.
For example, even the shortest cycle, such as A-B-A, requires
indirect flows that are transmitted by B.

Most efforts on developing a cycling index are based on
mathematical models that describe the flow of energy or matter
among a variety of species. While cycling can simply be defined as
the reutilization of flow material, there are multiple ways to
quantify the strength of cycling (Finn, 1976; Patten and Higashi,
1984; Allesina and Ulanowicz, 2004). For example, Finn's cycling
index (FCI) (Finn, 1976, 1978) calculates the proportion of total
system throughflow of energy or matter that is generated by
cycling. Allesina and Ulanowicz (2004) propose a comprehensive
cycling index (CCI) that takes into account cycling paths, including
simple cycles, compound paths and compound cycles. Simple
paths are defined as paths with no repeated compartments;
simple cycles are simple paths in which the starting and the
ending compartments coincide; compound paths are the paths
with repeated compartments; and compound cycles are repeated
cycles. A different approach by Ulanowicz (1983) quantifies the
amount of cycling by subtracting the structure of cycling from the
entire network. All simple cycles are subtracted from the network
until the remaining network becomes acyclic.

Among various cycling indices, the most widely accepted and
used one is Finn's cycling index (FCI) (Finn, 1976, 1978). This index
is part of ecological network analysis (ENA) (Patten, 1978; Fath and
Patten, 1999; Ulanowicz, 2004), a system-oriented methodology to
analyze within-system interactions (Fath and Borrett, 2006). ENA
works with the representations of ecosystems as compartmental
models, where compartments and connections represent various
species and flows of matter or energy, respectively. ENA defines
various quantitative indicators, including FCI, to describe different
aspects of the ecosystem. Most of these indicators provide the
description of non-observable relations within the system. For
example, indirect effect index (IEI) represents the proportion of
indirect effects over the total effects (Higashi and Patten, 1989; Ma
and Kazanci, 2012a); throughflow analysis (N matrix) (Matamba et
al., 2009) and storage analysis (S matrix) (Fath and Patten, 1999),
respectively, calculate how the environmental inputs contribute to
throughflow and storage of each compartment in the system. Most
of these measures involve somewhat unintuitive matrix computa-
tions, and are only applicable to steady-state systems, where the
flow and storage values stay constant over time. In contrast to the
algebraic method used in ENA, an individual-based simulation
method, network particle tracking (NPT), has been used to study
most ENA indicators and offer simpler and more intuitive inter-
pretations of these properties (Kazanci et al., 2009; Matamba et al.,
2009; Ma and Kazanci, 2012a,b). As NPT is based on Gillespie's
stochastic algorithm (Gillespie, 1977) for simulating chemical
reactions, the mean of different NPT simulations for the same
model agrees with the differential equation model. Simulating
tracer experiments, NPT discretizes storages of energy or mass into
particles (e.g., single atoms and energy quanta) and provides a list
of pathways that particles pass through the ecosystem. Further-
more, utilizing NPT, Kazanci and Ma (2012) extend some ENA
measures to dynamic models, significantly increasing their
applicability.

FCI is defined using an algebraic formula. While this algebraic
definition of cycling is computationally efficient for steady-state
models, it is rather hard to build an intuitive link between the

concept of cycling and the formula itself. For example, Allesina and
Ulanowicz (2004) state that “FCI is a biased counting of cycling,
because it does not include all flows engaged in recycling”. While
FCI does indeed compute the fraction of cycled throughflow
through all indirect flows, this fact is not immediately recognizable
from its algebraic formula. Using NPT, Kazanci et al. (2009) confirm
that FCI does actually compute the fraction of all particles’ revisits
to compartments (system throughflow due to cycling) over the
total number of visits (total system throughflow). This pathway-
based computation of FCI is much more intuitive than its algebraic
formula. Furthermore, NPT simulations are not limited to steady-
state networks, and therefore, are able to extend FCI to dynamic
models as well.

While this pathway-based method confirms the accuracy of
FCI, it also exposes a significant limitation of FCI, that it only
counts the number of revisits but disregards how long these
revisits are. For example, given that particle A revisits compart-
ment “Producers” spending 2 days there and that particle B also
revisits the same compartment “Producers” staying for 10 days,
these two revisits are regarded equally by FCI. Our intuition is that
the revisit with longer residence time should contribute more to
the strength of cycling. That means particle B's contribution to
cycling is four times greater than that of particle A. To eliminate
this discrepancy, we propose a new cycling index that weights
each visit with its corresponding residence time.

Using NPT simulations, we demonstrate the computation of a
weighted cycling index, utilizing both flow rate and residence
time. The product of flow rate and residence time is the storage
value. Therefore, this new weighted cycling index computes the
proportion of storage generated by cycling, and therefore is called
storage-based cycling index (SCI). For steady-state networks, we
also construct an algebraic formula for SCI that agrees with the
pathway-based calculation. Previously, Patten and Higashi (1984)
proposed an approximation to a storage-based cycling index using
Markovian techniques. However, due to the cumbersome nature of
the involved computation, this work is not utilized nearly as much
as FCI (cited only 29 times, whereas FCI was cited 475 times). In
this paper, we introduce both a pathway-based definition and an
algebraic formulation for SCI, which provide a much more intuitive
interpretation, and an efficient computation for steady-state
systems, respectively.

FCI and SCI measure the amount of cycling from the perspec-
tive of flow rate and storage, respectively. We compare FCI and SCI
for sixteen seasons' nitrogen flow models for the Neuse River
estuary, North Carolina, USA (Christian and Thomas, 2003). For
these models, SCI is more sensitive to the seasonal changes
occurring in the system. A comparison between FCI and SCI is
also shown with thirty-six published ecological network models,
which have a variety of network sizes. Their values for a specific
ecological network can differ significantly. SCI utilizes all the
information used for computing FCI, and also takes into account
the residence time, which is an important network property.
Herendeen (1989) has indicated that the residence time of
nutrients can be affected by cycling. Patten (1985) also shows
the importance of storage in generating network properties, such
as in diversifying path structure and increasing flows in networks.
Patten also concludes that energy storage as biomass is the root
cause of ecosystem energy cycling. Therefore, storage should be
taken into account in measuring of cycling (Patten and Higashi,
1984). We propose SCI as a desirable cycling index for ecosystems.

FCI and SCI, initially defined as system-level measures, can be
utilized to quantify the cycling strength for a single compartment in
the system as well. In other words, one can compute how much of
the throughflow or storage of a specific compartment is due to
cycling. In Section 5, we provide the computation of compartmental
FCI and SCI and discuss their relationship for steady-state networks.
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2. Finn's cycling index (FCI): a flow-based cycling index

2.1. Definition of FCI

Computation of Finn's cycling index (FCI) relies solely on the
flow rates of the ecological system, including environmental
inputs (z), outputs (y) and flows among compartments (F). Besides
flows, the storage value (x) represents the amount of currencies
stored in each compartment. Assuming there are n compartments
in the system, all the flows and storages are denoted as follows:

zi : Rate of environmental input to compartment i
yi : Rate of environmental output from compartment i
xi : Storage value at compartment i
Fij : Rate of direct flow from compartment j ðcolumns of FÞ

to compartment i ðrows of FÞ

where i; j¼ 1;2;…;n. Throughflow Ti is the rate of material (or
energy) moving through compartment i. Input throughflow is
defined as the sum of flow rates into compartment i from other
compartments and the environment. And output throughflow is
the sum of flow rates from compartment i to other compartments
and the environment. For a system at steady state, input and
output throughflows are equal:

Ti ¼ ∑
j ¼ 1

n
Fijþzi ¼ ∑

j ¼ 1

n
Fjiþyi: ð1Þ

The total system throughflow (TST) is the sum of throughflow Ti
for all compartments in the system. The idea of FCI is to divide TST
into two parts: one contributed by flow material's initial visits, and
the other generated through revisits or cycling, called TSTc . The
fraction TSTc=TST is defined as FCI. The derivation of the algebraic
formula is described below.

First, the flow intensity matrix G is obtained by normalizing the
flow matrix F by the throughflow T:

Gij ¼
Fij
Tj

ð2Þ

G is actually a one-step probability transition matrix, where Gij

represents the probability of transitioning from compartment j to
compartment i in one step. ½Gm�ij represents the fraction of the
flow material from j to i in exactly m steps (j-⋯-i|fflfflfflfflffl{zfflfflfflfflffl}

m

). The sum of

all powers of G defines the throughflow analysis matrix N:

N¼ I|{z}
Boundary

þ G|{z}
Direct

þG2þG3þ⋯|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Indirect

¼ ðI�GÞ�1 ð3Þ

where I is the identity matrix. Nij represents the throughflow
generated at compartment i by per unit input at compartment j. By
definition, diagonal values Nii represent the amount of through-
flow generated at compartment i by one unit input into compart-
ment i. Another interpretation from the perspective of flow
material is the number of times the discretized input (e.g., carbon
atom, energy quantum) entering at i will go through i on average.
A unit input into compartment i contributes to its throughflow (Ti)
at least once due to the initial visit. Therefore by definition, Nii is
larger than or equal to 1. Then, the difference ðNii�1Þ represents
the amount of throughflow generated at compartment i only
through cycling. Based on this idea, Finn (1978) defines his cycling
index as the fraction of the total system throughflow (TST) due to
cycling (TSTcÞ:

FCI¼ TSTc

TST
¼ 1
TST

∑
n

i ¼ 1
Ti
Nii�1
Nii

: ð4Þ

2.2. An easier interpretation of FCI from the perspective of pathways

Kazanci et al. (2009) provide a much simpler and intuitive
interpretation for FCI using the individual-based simulation
method called network particle tracking (NPT). It is based on
Gillespie's stochastic algorithm (Gillespie, 1977; Doob, 1945),
which is a variety of a dynamic Monte Carlo method (Meng and
Weinberg, 1994; Metropolis and Ulam, 1949). As shown in Fig. 1,
NPT discretizes storages of energy or matter into small particles
such as single carbon atoms or energy quanta, which are deter-
mined by the modeler. Then, based on flow rates, NPT determines
which flow is likely to occur and when. A particle is then chosen
randomly from the donor compartment and introduced to the
recipient compartment. This method traces movements of these
particles, and stores their pathways as an ordered list of compart-
ments they visit as they flow through the system. By converting
flow rates (inputs, outputs and inter-compartmental flows) into a
list of particle pathways, NPT offers a different way to view the
system from the perspective of a single unit of flow material, such
a single carbon atom, or an energy quantum.

34 123 421
234

156
2

91

236

111

321 7164221

19 44

69 731121

New particles from
the environment

Input from 
the environment

4312

57 717

212

many more ...46

22

Producers

Nutrient pool

Consumers

Entered Nutrient pool at time =124.6 units.

Passport of Particle 12
Entered Producers at time = 21.2 units.
Moved to Consumers at time = 34.5 units.

Left Nutrient pool at time = 139.7 units.

(NP)

(C)(P)
Producers Consumers

Nutrient pool

Fig. 1. NPT discretizes storages of energy or matter into small particles such as single carbon atoms or energy quanta, then traces movements of these particles, and stores
the pathways they pass through in the system.
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NPT has been used to re-investigate, verify and extend the
applicability of several NEA measures. For example, Kazanci et al.
(2009), Matamba et al. (2009) and Kazanci and Ma (2012) show
that the pathway-based computations and conventional algebraic
formulations coincide for FCI, throughflow analysis (N matrix), and
storage analysis (S matrix). Using NPT, Ma and Kazanci (2012a)
show that the original definition of indirect effects ratio ðI=DÞ
differs from its intended meaning, and provide a revised formula-
tion. Extending the applicability of ecological network analysis to
dynamic models has been discussed in Kazanci and Ma (2012),
using storage analysis as an example.

Here we describe the computation of FCI using particle path-
ways. Fig. 2 is a sample output of NPT, including the pathways of
three particles. As shown in Fig. 2, each particle visits a list of
compartments before leaving the system. Letters P, C, and NP
represent the three compartments “Producers”, “Consumers”, and
“Nutrient pool” in Fig. 1, respectively. The total number of
compartments visited by these three particles is 13. Some particles
may visit the same compartment multiple times because of
cycling. In Fig. 2, these revisits caused by cycling are underlined.
The number of revisits due to cycling is 4. Therefore,
FCI¼ 4=13� 0:3077. The sample output containing three path-
ways is used to demonstrate the idea of this method. More
pathways will be needed for an accurate computation of FCI. As
the number of pathways in the computation increases, the
pathway-based computation of FCI converges to the conventional
algebraic formulation (Eq. (4)). Kazanci et al. (2009) show that for
a four-compartment network, 105 pathways are required for an
accurate computation. It takes less than a second to simulate this
many pathways on a modern dual-core 3 GHz computer. Therefore,
high accuracy can be achieved by increasing the number of path-
ways being used, without consuming too much simulation time.

2.3. Limitations of FCI

In the previous subsection, we observe that FCI only counts the
number of compartments visited by particles. The number of
compartment visits corresponds to flow rates. Therefore, FCI only
depends on the flow rates. This fact is also demonstrated by the

algebraic definition of FCI in Eq. (4), as all the terms in the
equation, including T and N, are only flow-related. Thus, if a
network's flow rates are fixed, the FCI will remain constant,
regardless of how the storages of compartments vary. In other
words, two networks with the same flow rates but different
storages will have the same strength of cycling according to FCI.
While FCI is named after its author, J.T. Finn, interpreting FCI as
“flow-based” cycling index is perhaps more descriptive.

Fig. 3 shows two conceptual ecosystems with exactly the same
environmental input (z), flow matrix (F) and environmental
output (y). In this example, the only difference between these two
systems is the storage of the compartment “Producers”. In Fig. 3(a),
“Producers” has the storage of 50 units which is higher than that in
“Consumers” (20 units). As observed in most ecosystems, the
biomass of lower trophic levels is larger than that of higher levels,
following the well-known ecological pyramid of biomass (Odum,
1971). In Fig. 3(b), “Producers” has the storage value of 5 units, which
is even lower than that of “Consumers” (20 units). Therefore, it
follows an inverted pyramid (Jackson, 2006), which also occurs in
real life. For example, in some water ecosystems, the total amount of
major producers, such as phytoplankton, is usually smaller than the
standing stock of the consumers. This can be explained by the short
life span of phytoplankton in the water ecosystem. They are
consumed fast but also reproduce quickly, ensuring enough food
supply for consumers.

Because of the same flow rates, FCI (using Eq. (4)) for these two
systems in Fig. 3 are exactly the same: FCI¼0.0422. However, as we
have discussed earlier, these two systems represent totally different
ecosystems in real life. As the producers in (b) have shorter life span
than those in (a), the flow material in system (b) has a shorter
residence time. Shorter residence time may mean lower ability of
retaining biomass or energy within the system, or less efficient
utilization of nutrients. This indicates that (b) might have weaker
cycling than (a). Such differences due to storage or residence time
are ignored by FCI, raising the need for a new cycling index. In
addition, what we can directly observe in real ecosystems is mostly
the storage (biomass in trees, grass, animals, etc.), but rarely the
flows (the movement of biomass from one species to another, such
as sheep preyed upon by wolves). Storage plays an important role in
ecosystem function (Patten, 1985). Thus, a new cycling index that
quantifies the amount of the storage generated by cycling can
potentially be more useful in certain situations, especially when the
focus of research is on the storage or the ecosystem evolves
significant changes of storage. For example, carbon storage and
cycling (Pregitzer and Euskirchen, 2004; Hazen et al., 2012) has
been an active research topic in ecology. In these studies, storage is
a property that cannot be ignored, thus a storage-based cycling
index is preferable than a flow-based one. Another example is
eutrophication. Eutrophication involves a great increase of plant

**

**

PathwayParticle 1

PathwayParticle 2

Pathway **Particle 3

P P

P P

P

C

C

CNP NP

NP

NP

NP

Fig. 2. Sample output of NPT: pathways of three particles. Letters P, C, and NP
within the pathways represent three compartments “Producers”, “Consumers”, and
“Nutrient pool”, respectively. “n” denotes the environment.

X1=50 X2=20

510

100

70 25 20

5

X3=5

10

Nutrient pool

sremusnoCsrecudorP
510

100

70 25 20

5

X3=5

10

Nutrient pool

sremusnoCsrecudorP

X2=20X1=5

Fig. 3. Two simple conceptual ecosystems with the same flow rates, but different storages.
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biomass in the ecosystem. As FCI does not reflect changes of storage,
SCI can possibly serve as an indicator to detect eutrophication.

3. Storage-based cycling index (SCI): a residence
time-weighted cycling index

In this section, we develop a storage-based cycling index to
quantify the amount of total standing stocks in the system due to
cycling. Pathway-based computations of FCI provide a more
intuitive interpretation than algebraic approaches. NPT simula-
tions generate pathway and residence time information for each
particle flowing in the system, thus becoming a suitable tool to
develop a storage-based cycling index. Fig. 2 only provides the
pathway information, whereas Fig. 4 shows the complete simula-
tion output for the same three particles, including pathways, flow
times and residence times. “Flow time” indicates the times when
the particle enters the system, moves from one compartment to
another, and leaves the system. “Residence time” indicates the
duration a particle stays in each compartment, computed as the
difference between the entrance and exit times. For example,

particle 3 in Fig. 4 enters the system at compartment P (Producers)
at time¼2.3 units, then moves to compartment C (Consumers) at
time¼9.2, moves to compartment NP (Nutrient pool) at
time¼13.4 units, and finally leaves the system at compartment
NP (Nutrient pool) at time¼17.2 units. It passes through three
compartments in total and stays in compartments P, C, and NP for
6.9 units, 4.2 units and 3.8 units, respectively. The time unit here
can be in hours, days, or years, determined by the modeler, based
on the available empirical data. In Fig. 2, all the compartments
revisited by each particle are underlined. In Fig. 4, we underline
both the revisited compartments and the corresponding residence
times in these compartments.

The reasonwhy the mall is more crowded on black Friday is not
only that more people visit the mall, but also the fact that they stay
longer to browse and take advantage of various deals. Similarly,
the storage of a compartment is determined by two factors:
throughflow and residence time. The number of particles’ visits
to compartment i corresponds to its throughflow at i (Ti). The sum
of residence times for all visits constitutes the storage at i (xi).

In Fig. 4, both particles 1 and 2 revisit compartment P
(Producers) once. Particle 2 stays in compartment P (5.5 units)
longer than particle 1 (3.6 units). Given the number of revisits is
equal for the two particles, their contribution to the storage is
proportional to their residence time in compartment P. The
computation of FCI counts the number of revisits but disregards
how long these revisits are. Thus, FCI quantifies the cycled
throughflow. To derive the storage-based cycling index, we should
weight each visit with the corresponding residence time.

The sum of residence times in these revisited compartments
constitutes the total storage due to cycling. The sum of residence
times in all compartments is the total storage generated by both
first and repeated visits. Therefore, a storage-based cycling index
(SCI) is computed as follows:

Using the same three pathways, SCI is different from FCI
(FCI¼ 4=13¼ 0:3077). While this pathway-based computation of
SCI is intuitive and easy to understand, an algebraic formulation,
which is vastly easier to compute, is also desirable for steady-state
networks. As the computation of FCI (Eq. (4)) is in terms of
compartmental throughflow T and throughflow matrix N, one
straightforward way to construct SCI formulation is to replace these
flow-based terms with the storage-based terms. Throughflow
(T) can be replaced by storage values (x). Ecological Network
Analysis (Fath and Patten, 1999) provides a storage-based alternative
(S) to the throughflow analysis matrix N, where Sij represents the
storage generated at compartment i by per unit input at compart-
ment j. From the perspective of particles, Sij is the sum of its
residence times at i given that the particle enters the system at j.
The algebraic formulation of the storage analysis matrix S is defined
below. Further information on the pathway-based computation and
interpretation of S is provided in Kazanci and Ma (2012):

S¼ �C�1 ð6Þ

*
0.5 9.7 16.8 20.4 27.2 34.8

Residence time 9.2 7.1 3.6 6.8 7.6

**

*

Pathway

Pathway

1.2 10.3 19.8 28.0 33.5 41.6Flow time
Residence time 9.1 9.5 8.2 5.5 8.1

Flow time 2.3 9.2 13.4 17.2
Residence time 6.9 4.2 3.8

Particle 2

*

Pathway *
Flow time

Particle 1

Particle 3

P P

P P

P

C

C

C

NP

NP

NP

NP

NP

Fig. 4. Sample NPT output, including pathways, flow times and residence times. The
letters P, C, and NP within the pathways represent the three compartments “Producers”,
“Consumers”, and “Nutrient pool”, respectively. “*” denotes the environment.
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Fig. 5. Computation of SCI using NPT simulations in Eq. (5) converges to the result
using Eq. (7).

SCI ¼ Residence time of repeated visits
Residence time of all visits

¼ ð3:6þ7:6Þ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Particle 1

þð5:5þ8:1Þ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Particle 2

ð9:2þ7:1þ3:6þ6:8þ7:6Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Particle 1

þð9:1þ9:5þ8:2þ5:5þ8:1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Particle 2

þð6:9þ4:2þ3:8Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Particle 3

¼ 0:2768: ð5Þ
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where

Cij ¼
Fij=xj; ia j

�Ti=xi; i¼ j

(
:

In the formula of FCI (Eq. (4)), by subtracting the first visit,
Nii�1 represents the total number of revisits to compartment i.
The corresponding storage-based measures RTi and Sii, respec-
tively, represent the particles’ residence time at compartment i for
the first visit, and the cumulative residence time including all
revisits. Then, Sii�RTi, analogous to Nii�1, is the sum of residence
times of revisits (excluding the first visit). Therefore, ðSii�RTiÞ=Sii
indicates the proportion of residence time caused by cycling. Based
on the algebraic formula of FCI (Eq. (4)), simply by substituting
throughflow (Ti) with storage values (xi), and ðNii�1Þ=Nii with
ðSii�RTiÞ=Sii, the SCI formulation that computes the fraction of
total system storage (TSS) due to cycling (TSSc) is proposed as
follows:

SCI ¼ TSSc
TSS

¼ 1
TSS

∑
n

i ¼ 1
xi
Sii�RTi

Sii
ð7Þ

where TSS (total system storage) is computed as the sum of
storage values xi of all compartments in the system. To further
demonstrate that this formula agrees with the pathway-based
computation in Eq. (5), both methods are utilized to compute SCI
for the three-compartment steady-state model in Fig. 3(a). The SCI
computed using Eq. (7) is 0.0393. We also compute SCI using four
simulations of NPT (Fig. 5). As NPT is a stochastic simulation
method, the pathways of different simulations are not the same.
But as we increase the number of pathways (from 102 to 105), SCI
from all four simulations accurately converge to the same value of
0.0393, matching the algebraic formulation (Eq. (7)), indicating the
agreement between the two very different methods. For a given
model, the computational resources needed for an accurate
computation of SCI are difficult to predict, as it depends on a
number of parameters, including, but not limited to, network size
and connectivity. For the Everglades Graminoids Wet Season
model (Ulanowicz et al., 2000) with 66 compartments and 857
flows, accurate computations (1% relative error) of SCI requires
about 106 pathways, which takes about one minute to simulate on
an ordinary dual-core 3 GHz desktop computer. For smaller
models, pathway-based SCI can be computed in a couple of
seconds.

As we have shown earlier, the same FCI value (0.0422) for the
two ecosystems in Fig. 3 means that 4.22% of the total system

throughflow is due to cycling. Using Eq. (7), the SCI for models
(a) and (b) are 0.0393 and 0.0268, respectively, indicating that
3.93% and 2.68% of the total biomass in system (a) and (b) are due
to cycling. Not only the interpretations, but also the values of FCI
and SCI are indeed very different. As the producer in (b) has
shorter life span than that in (a), the turnover rate of producer in
(b) is much higher. Therefore, SCI provides potentially useful
information that is not indicated by FCI. For example, assuming
that the environmental input contains pollutants, the lower
cycling index in (b) indicates that the system with higher turnover
rate will be affected less by the pollutants.

Based on some equivalent relations between flow rates, storage
values, and residence times, an alternative representation of
Eq. (7) can be derived. The storage value of a compartment equals
the product of its residence time and throughflow: xi ¼ RTi � Ti.
For compartmental models, a similar relation exists between the
storage matrix S and throughflow matrix N: Sij ¼Nij � RTi. There-
fore, the term ðSii�RTiÞ=Sii can be reduced to ðNii�1Þ=Nii. Repla-
cing xi with RTi � Ti, SCI can be rewritten as

SCI ¼ TSSc
TSS

¼ 1
∑n

i ¼ 1RTiTi
∑
n

i ¼ 1
RTiTi

Nii�1
Nii

: ð8Þ

In this formula, the numerator represents the residence time of
recycled throughflow, and the denominator is the residence time
of all throughflow. Comparing Eq. (4) for FCI and Eq. (8) for SCI, we
clearly see that SCI is obtained by weighting FCI with residence
times. In other words, SCI is actually a residence time-weighted
FCI. If the residence time is the same for all compartments in the
system, the values of FCI and SCI will be the same. However, it is
rarely the case in real ecosystems. Different compartments hold
particles for different periods of time. Therefore, SCI would predict
a different impact of recycling than FCI.

Two formulas in Eqs. (7) and (8) are equivalent and agree with
the pathway-based method for steady-state models. However,
ecosystems are rarely at steady state. Flows and storage values
change over time, often fluctuating daily and/or seasonally. Thus,
for highly dynamic models, algebraic formulas of FCI and SCI may
not be appropriate. Fortunately, one significant advantage of
pathway-based definitions is their applicability to both steady-
state and dynamic models.

4. Numerical difference of FCI and SCI

As demonstrated in the last section, both the computation and
interpretation of FCI and SCI are different. Then, another question
of interest is how much can FCI and SCI values vary for a given
ecosystem model. To illustrate how FCI and SCI can be different,
we compare the two indices for sixteen seasons' nitrogen flow
models for the Neuse River estuary, North Carolina, USA (Christian
and Thomas, 2003). All sixteen models have identical structures,
but different flow and storage values. Fig. 6 shows the seasonal
changes in FCI and SCI values, from spring 1985 through winter
1989. FCI values indicate a high level of cycling overall, with little
variation between seasons. Comparing with SCI, we observe that
the recycled storage is much lower than recycled flow. Further-
more, SCI fluctuates in a wide range between 0.10 and 0.85,
showing a clear distinction among seasons, unlike FCI. Riley
(2000) states that sensitivity to change is an important character-
istic of a good indicators. SCI, taking into account of both flow and
residence time, is more sensitive to seasonal changes that occur in
the Neuse River estuary.

To further compare the two indices for a variety of networks,
we compute SCI and FCI for thirty-six ecological networks gath-
ered from the literature. All of these networks are at steady state.
Table 1 provides the reference, flow currency and flow unit for
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Fig. 6. SCI and FCI of sixteen seasons' nitrogen flow in Neuse River estuary, North
Carolina (Christian and Thomas, 2003).
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each of these ecological networks. The percent difference between
FCI and SCI is computed as the absolute difference between two
values, divided by the average of these two values:

FCI�SCI
ðFCIþSCIÞ=2� 100:

The column titled “Difference (%)” in Table 1 shows that FCI can
vastly differ from SCI.

A plot of SCI versus FCI is shown in Fig. 7. The dashed line
indicates SCI¼FCI. We observe that SCI can be very different from
FCI for most of these models. For example, several networks at
around (0.1, 0.4) have SCI that is almost four times of their FCI. On
the other hand, the network at around (0.2, 0.05) has SCI that is
about 1/4 of its FCI. This implies that it would be incorrect to use
FCI to compute the contribution of recycled particles to storage in
a food web.

5. Compartmental cycling index

While it is often used as a system-wide property, the cycling
index can be better characterized by highlighting the contribution
of each compartment. For example, pollutants existing within an
ecosystem may repeatedly visit the same species due to cycling.

System-wide cycling indices quantify the effect of pollution in the
system as a whole, but do not provide much information on how
strong the effect of pollution is for each species, or compartment.
For such analysis focusing on single species (or compartment), a
compartmental cycling index is more meaningful.

System-wide FCI and SCI are actually computed by summing up
the strength of cycling in all compartments. Their formulations can
easily be reduced to represent the strength of cycling for a single
compartment j. For a single compartment j, TST (total system
throughflow) is replaced by the Tj (throughflow at compartment j).
Then the FCI for j can be defined as:

FCIj ¼
1

∑i ¼ jT i
∑i ¼ jT i

Nii�1
Nii

¼ 1
Tj
Tj
Njj�1
Njj

¼Njj�1
Njj

: ð9Þ

Similarly, SCI (Eq. (7)) can be modified to represent compart-
mental storage-based cycling:

SCIj ¼
1

∑i ¼ jxi
∑
i ¼ j

xi
Sii�RTi

Sii
¼ 1
xj
xj
Sjj�RTj

Sjj
¼ ðNjj�1ÞRTj

NjjRTj
¼Njj�1

Njj
:

ð10Þ
For steady-state models, residence time (RTj) of an atom, or an
energy quantum, is constant for each compartment j. Once the
residence time is out of the equation, compartmental FCI (Eq. (9))
and SCI (Eq. (10)), although they have different meanings, are

Table 1
Comparison of FCI and SCI for thirty-six ecological network models. The percent difference between FCI and SCI is computed as the absolute difference between two values,
divided by the average of these two values: ðFCI�SCIÞ=ððFCIþSCIÞ=2Þ � 100. Connectance is computed as the ratio of the number of actual intercompartmental links (d) to the
number of possible intercompartmental links: d/(# Compartments)2.

Model Flow
currency

Flow unit #Compartments #Nonliving
compartments

Connectance FCI SCI Difference
(%)

Lake Oneida (pre-ZM) (Miehls et al., 2009a) Carbon G/M2/Year 74 3 0.221 1.08E�4 5.99E�5 57.29
Lake Oneida (post �ZM) (Miehls et al., 2009a) Carbon G/M2/Year 76 3 0.216 1.34E�4 1.14E�4 16.13
Lake Quinte (pre�ZM) (Miehls et al., 2009b) Carbon G/M2/Year 74 3 0.209 8.78E�4 8.03E�4 8.92
Lake Quinte (post-ZM) (Miehls et al., 2009b) Carbon G/M2/Year 80 3 0.209 0.006 0.011 �58.82
St. Marks Seagrass, site 3 (January) (Baird et al., 1998) Carbon Mg/M2/Day 51 3 0.048 0.007 0.021 �100.00
Everglades Graminoids Wet Season (Ulanowicz et al., 2000) Carbon G/M2/Year 66 3 0.181 0.018 0.049 �92.54
St. Marks Seagrass, site 4 (February) (Baird et al., 1998) Carbon Mg/M2/Day 51 3 0.077 0.035 0.086 �84.30
Everglades Graminoids Dry Season (Ulanowicz et al., 2000) Carbon G/M2/Year 66 3 0.181 0.037 0.095 �87.88
Cypress Dry Season (Ulanowicz et al., 1997) Carbon G/M2/Year 68 3 0.120 0.043 0.007 144.00
Cypress Wet Season (Ulanowicz et al., 1997) Carbon G/M2/Year 68 3 0.118 0.044 0.009 132.08
Northern Benguela Upwelling(Heymans and Baird, 2000) Carbon Mg/M2/Day 24 2 0.201 0.047 0.088 �60.74
Swarkops Estuary (Baird et al., 1991) Carbon Mg/M2/Day 15 3 0.156 0.056 0.082 �37.68
Ems Estuary (Baird et al., 1991) Carbon Mg/M2/Day 15 3 0.164 0.059 0.225 �116.90
Crystal Creek (Ulanowicz, 1986) Carbon Mg/M2/Day 21 1 0.186 0.066 0.084 �24.00
St. Marks Seagrass, site 2 (February) (Baird et al., 1998) Carbon Mg/M2/Day 51 3 0.076 0.083 0.208 �85.91
Florida Bay Dry Season (Ulanowicz et al., 1998) Carbon Mg/M2/Year 125 3 0.126 0.084 0.124 �38.46
St. Marks Seagrass, site 2 (January) (Baird et al., 1998) Carbon Mg/M2/Day 51 3 0.068 0.086 0.214 �85.33
Crystal River (thermal) (Ulanowicz, 1986) Carbon Mg/M2/Day 21 1 0.136 0.090 0.118 �26.92
Mangrove Estuary Wet Season (Ulanowicz et al., 1999) Carbon G/M2/Year 94 3 0.152 0.095 0.049 63.89
Mangrove Estuary Dry Season Ulanowicz et al. (1999) Carbon G/M2/Year 94 3 0.152 0.097 0.049 65.75
St. Marks Seagrass, site 1 (February) (Baird et al., 1998) Carbon Mg/M2/Day 51 3 0.083 0.109 0.256 �80.55
Oyster Reef (Dame and Patten, 1981) Energy Kcal/M2/Day 6 1 0.333 0.110 0.092 17.82
Neuse Estuary Flow Model, Late Summer 1998 (Baird et al.,

2004)
Carbon Mg/M2/Day 30 5 0.093 0.112 0.365 �106.08

Chesapeake Mesohaline Ecosystem (Baird, 1989) Carbon Mg/M2/Day 15 3 0.182 0.116 0.301 �88.73
Neuse Estuary Flow Model, Early Summer 1997 (Baird et al.,

2004)
Carbon Mg/M2/Day 30 5 0.088 0.116 0.337 �97.57

Neuse Estuary Flow Model, Early Summer 1998 (Baird et al.,
2004)

Carbon Mg/M2/Day 30 5 0.084 0.120 0.349 �97.65

St. Marks Seagrass, site 1 (January) (Baird et al., 1998) Carbon Mg/M2/Day 51 3 0.075 0.125 0.312 �85.58
Neuse Estuary Flow Model, Late Summer 1997 (Baird et al.,

2004)
Carbon Mg/M2/Day 30 5 0.111 0.126 0.365 �97.35

Aggregated Baltic Ecosystem (Wulff and Ulanowicz, 1989) Carbon Mg/M2/Day 15 3 0.164 0.129 0.211 �48.24
Baltic Sea (Baird et al., 1991) Carbon Mg/M2/Day 15 3 0.165 0.130 0.221 �51.85
Somme Estuary (Rybarczyk and Nowakowski, 2003) Carbon G/M2/Year 9 1 0.296 0.139 0.204 �37.90
Florida Bay Wet Season (Ulanowicz et al., 1998) Carbon G/M2/Year 125 3 0.124 0.144 0.193 �29.08
Chesapeak Bay Mesohaline Network (Baird, 1989) Carbon Mg/M2/Year 36 3 0.093 0.194 0.066 98.46
Bothnian Bay (Sandberg et al., 2000) Carbon Mg/M2/Year 12 2 0.201 0.264 0.409 �43.09
Bothnian Sea (Sandberg et al., 2000) Carbon G/M2/Year 12 2 0.215 0.327 0.482 �38.32
Narragansett Bay (Monaco and Ulanowicz, 1997) Carbon Mg/M2/Year 32 1 0.152 0.505 0.758 �40.06
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numerically equivalent for the same compartment. For dynamic
models, however, the compartmental FCI and SCI values may differ
as they change over time (Kazanci and Ma, 2012).

6. Discussion and conclusion

The main contribution of this work is the introduction of a new
storage-based cycling index (SCI). Finn's original formulation of
the cycling index (FCI) has been used by many researchers from a
wide range of disciplines. However, we believe a storage-based
cycling index does indeed have a wide range of potential applica-
tions, some of which are mentioned in the previous sections.

SCI has been conceived two decades ago (Patten and Higashi,
1984). However, the cumbersome formulation using Markov
chains hindered its widespread adaptation. In this paper, we
provide a simple algebraic formulation similar to FCI, in addition
to a pathway-based formulation that makes this useful but limited
formulation applicable to dynamic systems. Many interesting
research problems concern change, therefore the quasi-steady
state assumption does not always hold. Studies of climate
change, environmental impacts, regime shifts do need a dynamic
formulation.

An interesting point is the vast time difference of over three
decades between this paper studying SCI and the original work on
FCI by Finn (1976), which makes us wonder why the work
presented in this paper was not published earlier. One reason we
anticipate is the inherent difficulty of utilizing matrix algebra to
study and formulate complex system-wide measures involving
indirect effects. A recent development, network particle tracking
(NPT), has been an invaluable tool in this regard. It is compelling
that the pathway-based formulations of cycling, as well as other
ecological network analysis measures, which are based on count-
ing arguments applied to the output of a stochastic individual-
based simulation algorithm (NPT), agree with the rather rigid
algebraic formulations. This correspondence, or backwards com-
patibility, enables us to investigate new useful formulations of
ecosystem measures, using the flexible medium of pathway data,
with the possibility of a corresponding algebraic formulation for
easy computation.

While cycling index is originally proposed as a measure for
ecological network analysis, the concept of cycling is applicable to,
and carries different meanings in other fields, such as reinfection

in epidemiology (Gomes et al., 2004), the reuse of materials in
industry (Bailey et al., 2008), and the recycling of drug within body
in pharmacokinetics (Hatanaka et al., 1998), to name a few. Our
computation of cycling index for ecosystems is applicable to these
areas as well.
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