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Ecological network analysis (ENA), predicated on systems theory and Leontiev input–output analysis, is
a method widely used in ecology to reveal ecosystem properties. An important ecosystem property com-
puted in ENA is throughflows, the amount of matter/energy leaving each compartment of the ecosystem.
Throughflows are analyzed via a matrix N representing their relationships to the driving input at the
boundary. Network particle tracking (NPT) builds on ENA to offer a Lagrangian particle method that
describes the activity of the ecosystem at the microscopic level. This paper introduces a Lagrangian
agrangian method
etwork particle tracking

throughflow analysis methodology using NPT and shows that the NPT throughflow matrix, N, agrees
with the conventional ENA throughflow matrix, N, for ecosystems at steady-state with donor-controlled
flows. The matrix N is computed solely from the pathways (particles’ histories) generated by NPT simu-
lations and its average over multiple runs of the algorithm with longer simulation time agrees with the
Eulerian N matrix (Law of Large Numbers). While the traditional NEA throughflow analysis is mostly used
with steady-state ecosystem models, the Lagrangian throughflow analysis that we propose can be used

dels
with non-steady-state mo

. Introduction

Ecological systems modeling benefited from diverse and dis-
arate influences. Early models (e.g., Malthus, 1798; Lotka, 1925;
olterra, 1926) were of nonlinear population processes that gener-
lly did not explicitly account for environment. Tracer experiments
e.g., Sheppard and Householder, 1951; Teorell, 1937) conducted in

edical research indirectly included the environment by injecting a
ye or radioactive substance to observe its pathway through the sys-
em to the point of exit. Such experiments led to the development
f linear differential equations with constant coefficients, which
ere subsequently adopted in ecology for compartment modeling

Matis et al., 1979). The latter developed in parallel with systems
cology, which arguably arose from a need to include environment

ore explicitly in models describing the movement of energy and
atter through different trophic (feeding) levels (Lindeman, 1991)

r entire ecosystems (Odum, 1957).
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and paves the way for the development of dynamic throughflow analysis.
© 2009 Elsevier B.V. All rights reserved.

A key element in compartment modeling is that the quantities
transferred are conservative. Compartment models take a macro-
scopic control-volume, or Eulerian, perspective that groups particle
activity into average stocks (compartment storages) and flows
(inter-compartmental transactions). Its mathematical descriptions
distinguish system (inside the control volume) from environment
(outside), and dynamics proceeds from initial through transient to
steady states. At steady state, inflow equals outflow at both the
system level and the individual compartment level. Such states
are only macroscopically “steady”, however, because at the level
beneath the aggregate stocks and flows, absent attainment of ther-
modynamic equilibrium, the individual particles making up these
quantities continue in dynamic motion. A shortcoming of the Eule-
rian approach is that the finer level of detail that actually gives
rise to the aggregate stocks and flows is impossible to study. On
the other hand, an alternative Lagrangian methodology to describe
each individual particle’s relevant dynamics is impractical for most
ecological analyses because supporting data at the particle level
cannot be obtained. The problem is the same as in the distinction
in physics between mechanics and statistical mechanics, suggesting

a stochastic approach may also be appropriate for compartmental
systems. The network particle tracking (NPT) method used in this
paper is such a stochastic methodology. It describes the movement
of individual particles within the system and in exchange with the
environment (Tollner and Kazanci, 2007). Whereas a differential

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:lemat@uga.edu
mailto:matamba5@yahoo.fr
mailto:caner@uga.edu
dx.doi.org/10.1016/j.ecolmodel.2009.07.001
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Fig. 1. An example of energy or matter flows and storages in an ecosystem model.
L. Matamba et al. / Ecological

quation description of a system provides an aggregate accounting
f storages and flows, beneath this accounting are the continuously
hanging motions and positions of countless (but finite) individual
articles. Essentially NPT allows for a model to account for the envi-
onment’s open flow characteristics where subsequently over time,
his continuous stochastic activity averages to predictable or even
teady-state storages and flows. In this study, by tracking appar-
ntly random individual path histories of particles in a network,
e account for their histories and then show that their through-
ow activity, when averaged, is actually the same as the activity
alculated and represented by traditional analytic methods. We
ccount for the system and its surrounding environment’s stochas-
ic behavior and show that this behavior, when considered in total,
an actually present itself as steady-state activity.

Simulating the incremental behavior of individual particles
ffords an opportunity to both expand ecological network analysis
ENA) methodology and better understand microdynamic ecosys-
em behavior Gattie et al. (2006). For example, using current ENA

ethods, inputs from the environment can be readily mapped to
hroughflows in the system. However, NPT allows an additional
esolution of internal system activity, through detailed informa-
ion of individual particle activity, by revealing to what extent
nputs from internal system compartments contribute to the system
hroughflows. NPT is also capable of simulating ecosystems evolv-
ng over time (diurnal, seasonal, long-term climate change, etc.)

here model output can be used to assess dynamic, averaged, or
ther groupings of ecological properties. Essentially, NPT represents
n ability to reveal actual system activity at different resolutions.
specially, NPT simulations reveal that all meaningful and mea-
urable exchanges between system components over a finite time
ccur along pathways of bounded length. Therefore, the through-
ow matrix N is accurately measured as a finite sum. Considering
he underlying dynamic and stochastic behavior of ecosystems in
eneral, we begin to examine the system microdynamics behind
bserved ecosystem activity.

. Compartment models: general form

Systems ecology takes a holistic approach to study organisms
y embedding them in their natural habitat and investigating their
ehavior as they mutually interact, directly and indirectly, with
ne another and also with the abiotic resource and habitat vari-
bles that define the conditions for life. The prescription “directly
nd indirectly” establishes that the spheres of influence within an
cosystem must be interconnecting networks of interactions, for it
s these that both enable and reflect the fact that indirect relation-
hips are important in system dynamics (Higashi and Patten, 1989).
cological network analysis (ENA) is a mathematical methodology
erived from system theory and input–output analysis. It studies

ndividuals as part of connected networks to elucidate their role
n the web of interrelationships with other components and with
he surrounding environment (Patten, 1978; Fath and Patten, 1999).
he main goal of ENA is to examine the interdependence of organ-

sms in a biota and quantify the interactions, direct and indirect,
etween any arbitrary pair of compartments in an interconnection.
ue to mathematical difficulties, the present theory is developed

or steady-state systems only, although several previous initiatives
ave explored methods for dynamic systems (e. g., Hippe, 1983;
allam and Antonios, 1985).

In ENA, systems are modeled as weighted digraphs (directed

raphs) with tentacles. The weighted nodes correspond to com-
artments that store conservative quantities. Compartments can
e biotic or abiotic aggregates of species, groups of species, or
rganic or inorganic substances, or mixtures of all such cate-
ories. Arcs, which are oriented weighted edges interconnecting the
Labels xi denote the stock values of nodes i, zi are the environmental input at node
i, yi are the output flow from node i, and fij is the direct flow from node j to node i
inside the system.

nodes, represent substance transfers between the compartments.
The transfers represent conservative flows, and the tentacles are
arcs connecting the interior compartments to the external environ-
ment. Realistically, due to inherent randomness of the generating
processes, these functions are, or should be (they are not in conven-
tional ENA), stochastic. With these specifications, we can proceed
to identify and notate the relevant model quantities, all of which
are implicitly functions of time:

xi : storage value of the modeled substance at node i.
fij : flow of the modeled substance from node j to node i

per unit of time.
zi : driving input from the environment to i.
yi : dissipative output to the environment at node i.

Tin
i : throughput(sum of inflows)into node i

Tout
i : throughflow(sum of outflows)out of node i

Fig. 1 illustrates these quantities (except the throughflows) for
an example digraph.

In a deterministic framework, the rate of change of the stock
values in any ecosystem with n nodes is governed by the following
system of ordinary differential equations:

dxi

dt
=

n∑
j=1

fij + zi

︸ ︷︷ ︸
−

n∑
k=1

fki − yi,

︸ ︷︷ ︸
i = 1, . . . , n. (1)
input intoi output fromi

The positive terms represent inflows to compartment i, Tin
i ,

and the negative ones outflows, Tout
i . It is the generation of these
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hroughflows that is the focus of this paper.

in
i =

N∑
j=1

fij + zi, Tout
i =

N∑
k=1

fki + yi (2)

The throughflow of compartment(node) i is

i = Tout
i =

n∑
k=1

fki + yi (3)

For an ecosystem at steady state, that is, the storage values xi for
ll nodes do not change in time ((dxi/dt) = 0 at all times and for all
odes i in the network), the throughflow is

i = Tin
i = Tout

i . (4)

. Conventional input–output throughflow analysis

Compartmental throughflow analysis quantifies substance flow
rom boundary inputs, zj , to interior compartments, xi, to boundary
utputs, yi. Solving Eq. (3) for zi,

i −
n∑

j=1

fij = zi (5)

and expressing each fij as a fraction of the throughflow of the
onor compartment:

ij = fij

Tj
⇔ fij = gijTj, (6)

Eq. (5) becomes

I − G)T = z, (7)

where I is the n × n identity matrix, G is the n × n throughflow-
ormalized direct flow matrix (Eq. (6)), T is the n × 1 vector of
hroughflows and z the n × 1 vector of environmental inputs.

From Eq. (7), assuming I − G is invertible, a mapping from the
oundary input vector, z = [zi], to the interior throughflow vector,
= [Ti] follows:

= N z where N = (I − G)−1. (8)

This is standard steady-state ENA and NEA formulation for
hroughflow. It enables the computation of throughflows generated
y a given input vector, z, as the matrix product Nz. For example,

f z = [1, 0, . . . , 0]T , representing one unit of substance introduced
nto the system at compartment 1, the corresponding throughflow
enerated would be

n11 · · · n1n

...
. . .

...

nn1 · · · nnn

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1

...

0

⎤
⎥⎥⎦ =

⎡
⎢⎣

n11
...

nn1

⎤
⎥⎦ . (9)

This quantifies the contributions made to each of the n through-
ows by a unit input into compartment 1, and it follows that nij

uantifies the amount of nutrients that move through i due to a
nit of input into j.

From Markov chain theory, the coefficients nij also have an alter-
ative interpretation as the number of times a unit of substance

ntroduced at j will appear at i while it remains in the system.

f the term “unit” as used in this paragraph is interpreted as a
particle”, one can see how the conventional input–output method-
logy of ENA and NEA relates conceptually to the particle tracking
ethodology. Computationally, however, the two approaches are

ery different.
lling 220 (2009) 3174–3181

Finally, if the non-dimensional flow intensities defined in Eq. (6)
satisfy for all i,

∑n
j=1|gij| < 1 or if the eigenvalues of G are all < 1,

then N can be decomposed as follows:

N = (I − G)−1 = I + G + G2 + · · · (10)

giving for (8):

T = Nz = (I − G)−1z = (I + G + G2 + · · · )z (11)

In these expressions, Gm represents the m’th power of G whose
entries, g(m)

ij
(parentheses signify powers obtained by matrix, not

scalar, multiplication), indicate the proportion of throughflow Tj

that reaches compartment i in m transfer steps. That is, the power
series partitions nij into components that reach i after traveling over
all pathways in the system of all possible lengths, m = 0, 1, 2, . . . ,
leading to i from the originating compartment j. The first term,
I = G0, corresponding to m = 0, brings input across the boundary
into the system interior (the first term, Iz, in Eq. (11)), for subse-
quent distribution (Gz, G2z, G3z, . . .) over pathways of successively
increasing length. The pathway aspects of the traditional approach,
implicit in Eqs. (10) and (11) power series, motivate the individual-
based particle tracking methodology, as next described.

4. Throughflow analysis by network particle tracking

This section presents a new approach to throughflow analysis.
Recall that the main question to be answered is, for any com-
partmental system how much substance (nij) does compartment
i receive for each unit of that substance introduced into the system
at compartment j? All ecosystems live far from steady state and
continually reorganize themselves as their environment changes.
However, most NEA software packages are build on the assump-
tion that the ecosystems are at steady state (Fath and Borrett,
2006; Allesina and Bondavalli, 2004) and uses the matrix alge-
bra approach of input–output analysis as outlined in the previous
section. Using that methodology, it is not possible to evaluate the
activity between two compartments under changing non-steady
states. The method developed here takes a different approach,
based on network particle tracking (NPT). This simulates the path-
way trajectory of each particle flowing in the system during a given
time period, records these histories, and then computes nij values
simply from information contained in them. In the two subsections
below, we explain first the NPT algorithm that enables labeling,
tracking, and recording of individual particles during simulation of
system dynamics (Section 4.1). Then, we describe how to compute
a NPT-based version of nij utilizing information contained in the
trajectories (Section 4.2). Finally, in Section 5, we compare nij val-
ues computed by both the conventional and NPT methods for a set
of literature models.

4.1. Network particle tracking

In NPT, each unit of mass or energy is labeled and tracked in
time as it flows in simulated system dynamics through the system
network defined by Eq. (1). The NPT algorithm starts by partition-
ing initial stocks of stored substance into packets we call particles.
Bookkeeping is simple: a unique integer label is assigned to each
particle together with a real number representing its size as a unit
of stock defined by the modeler. Next, based on flow intensities, fij

derived from the defining equations, NPT computes which flow is
next likely to occur, and when. To implement that flow, a particle

is chosen at random from the donor compartment and shifted to
the recipient compartment. If the chosen flow is an environmental
input, then a new particle is introduced into the receiving compart-
ment. NPT then records the trajectory of each particle as it passes
through the network.
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Table 1
Example of computation of nij using a partial output of NPT.

Number of occurrences of 2 after 1 6
Number of pathways containing a 1 6

6

y no
)that

de to
at co
L. Matamba et al. / Ecological

An essential property of NPT is that the simulation results are
ompatible with the differential equation formulation (1) of the
odel. In other words, the average of many NPT runs coincides with

he ODE solution. Since NPT deduces its rules on how an individual
article will move directly from the ODE representation, there is
o need for extra parameters or decisions, as usually is required

n building individual-based models. Exact causality is preserved,
hether this be linear, nonlinear, stationary, or time-varying, etc.

At steady state, the Eulerian ODE Eq. (1), gives the illusion
hat the system is static as no macroscopically observable change
ccurs over time. In fact, however, substance continues to enter
nd leave each compartment, and the system as a whole, at equal
ates, Eq. (4)). The familiar open-system example of water stand-
ng at a fixed level in a basin with fluid coming in and draining out
ives no evidence that anything dynamic is happening, that water
olecules are in fact continually being introduced and exhausted.
PT enables a Lagrangian assessment of such microscopic activ-

ty, and demonstrates that although compartmental storage values
ay be constant the pool of substance is dynamic and undergoes

ontinual turnover. In NPT, this is demonstrated by changing iden-
ities of the stored particles in the compartments. Particle tracking

akes turnover easy to recognize.
In NPT, newly introduced particles are assigned unique tags as

hey enter the system flow-stream. With inflow only, the stock of

articles at each node and in the system would increase during sim-
lation, but with output the dissipated particles could eventually
alance the entering ones, bringing the system macroscopically to
teady state. NPT recycles the memory freed by dissipated particles
nd appends their pathway histories to a text file. Through extensive

nij =
∑

pathways

Number of occurrences ofiafterjin each pathway(an
Total number of paths(any node to any node

nii =
∑

pathways

Number of occurrences of i in each pathway(any no
Total number of paths(any node to any node)th
se of such computational innovations, the algorithm takes only a
ew seconds to run on modern computers for models of moder-
te size and connectivity. Fig. 2 shows the pathway trajectories of
everal selected particles in a run of Fig. 1 model.

ig. 2. Partial output from a NPT run of Fig. 1 model. Pathway trajectories of six arbi-
rarily selected particles are shown. Key to compartments: 0 = reserves, 1 = available
utrients, 2 = food base, 3 = consumers, 4 = detritus and 5 = decomposers.
n21 ≈ 6 = 1
Number of occurrences of 1 in the file 12
Number of line containing a 1 6

n11 ≈ 12
6 = 2

For steady-state ecosystem models, the ODE (1) gives the illu-
sion that the system “stopped”, as nothing changes overtime. In
fact, matter or energy is entering and leaving (each compartment
and the system as a whole) at equal rates. NPT enables us to see
the activity hidden by the ODE model (1) and demonstrates that
although compartmental storage values are constant, the pool of
nutrients is frequently renewed as demonstrated by the changing
identities of the particles stored in compartments.

4.2. Stochastic Throughflow Analysis

The NPT algorithm uses the pathway trajectories of all the par-
ticles in a system during a simulation trial to calculate a Lagrangian
version, N = (nij) of the Eulerian throughflow matrix N = (nij), of
unit-input–generated throughflows, nij , for all (i, j) pairs of com-
partments. The computations are, for j /= i:

de to any node)
containj

(12)

and for j = i

any node)
ntaini

. (13)

These formulations are surprisingly simple compared to the con-
ventional theory’s (Section 3) involved rationales about direct (G,
Eq. 10) and indirect (N − G − I) contributions of all orders to the
mapping of boundary inputs (z) into throughflows (T), Eq. (11). Eq.
(12) says simply, for each (i, j) node pair with i /= j, that the mapping
of boundary input at j into interior throughflow at i is the sum-
mation, over all directed pathways in the j-to-i interconnection, of
the number of times i follows j (numerator) relative to the total
number of pathways that contain j (denominator). Eq. (13) gives
self-influence as the summation of the number of times i occurs in
all pathway trajectories, divided by the number of pathways that
contain i. In the simplicity of these expressions one sees immedi-
ately how mathematical limitations of the conventional approach
are obviated. The NPT method depends in no way on properties of
the simulated model such as linearity, stationarity, steady state, etc.
It is completely general over all classes of dynamical systems one
might employ in representing ecological flow-storage networks.

As an example, let us compute n21 and n11 using the partial NPT
output presented in Fig. 2. Table 1 describes this calculation, based
on Eqs. (12) and (13). Repeating this calculation for all entries of N,
we get the following matrix:

N ≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

1 2 1.2 1.5 1.6 1.8

0 1 1.2 0.5 0.6 0.8

0 0.167 0.2 1 0 0

0 1 1.2 1.5 1.6 0.8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)
0 1 1.2 1.5 1.6 1.8

NPT is based on a stochastic algorithm, therefore each simulation
of the same model generates a different set of pathways. How-
ever, the number of particles flowing through the system for the
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Fig. 3. Both (a) and (b) show that N converges to N as simulation time increases.
(a) n is computed using 1000 NPT simulations of the seven-compartments,
178 L. Matamba et al. / Ecologica

ame duration of simulation time will not fluctuate greatly. There-
ore, computing nij from the pathways recorded by NPT raises the
ollowing issues about precision and accuracy:

1. How does nij vary with the number of pathways used?
. How many pathways are needed, on average, to obtain values of
nij of a prescribed accuracy?

. How does nij vary over multiple simulations of the same model?

We address these questions in the next section.

. Comparative analysis of the NPT based throughflow
heory

We tested our Lagrangian throughflow theory (Section 4) by
omparing the NPT based N and the Eulerian N computed for a
et of 12 aquatic and terrestrial ecological models, both published
nd unpublished. One model, a seven-compartment description of
arbon flow in an open ocean euphotic-zone ecosystem (Fasham,
985), was used in development, and the others to demonstrate
enerality. Precision and accuracy of results were also considered.

.1. Numerical Results: Development

NPT is based on a stochastic algorithm, therefore its computedN
atrix differs for each simulation. However, the matrix converges

o the conventional analytic N matrix (Eq. 10) as simulation time
ncreases. To demonstrate this, we ran the Fasham (1985) model
000 times and computed coefficient n32 as an example. Fig. 3(a)
hows the distribution of the generated values for four different
imulation times. Variance of the computed n32 values decreased
o zero and the values converged to the analytic n32 value as the
imulation interval was lengthened.

To determine if all entries of N converge to N, we define the
ollowing scalar measure of matrix discrepancy:

(N, N) = ||N − N||∞ = max(|nij − nij|, 1 ≤ i, j ≤ n)

Note that �(N, N) is larger than any of the differences |nij − nij|.
herefore if �(N, N) = ı, then we have that |nij − nij| ≤ ı for all i, j =
, 2, . . . , n.

In Fig. 3(b), �(N, N) vs. simulation time is plotted for four NPT
uns of the same model. In all four cases, �(N, N) converges to zero
s simulation time increases despite the inherent stochasticity of
he NPT methodology. As �(N, N) is the maximum difference, it fol-
ows that all entries of the computed stochastic simulation matrix,
, converge to the analytic throughflow matrix, N.

.2. Numerical Results: Generalization

To establish that the observed convergence in Fig. 3(b) was not
pecific to the chosen model, we investigated �(N, N) for twelve
ore ecological models ranging in size from four to twelve com-

artments. Results are shown in Figs. 4 and 5. In every case N → N
s simulation time increased. We conclude that the Lagrangian
article-tracking methodology of this paper (Section 4) generates,
r can be made to generate with long enough simulations, compa-
able numerical results to those obtained with established Eulerian
nput–output methods (Section 3).

.3. Numerical Results: Precision and Accuracy
Issues of precision and accuracy are germane to the NPT method-
logy. Here we present a few general observations about this based
n our computational experience, but closer study must await
uture investigation.
32

euphotic open ocean, carbon flow model Fasham (1985) for four different simulation
instances. (b) The scalar differences, as defined in the text, between the stochastic
and conventional throughflow matrices are shown for four NPT simulation instances.

It became evident during the stochastic runs for Figs. 4 and 5
that run variances decreased as simulation time increased. This
indicated that long simulation intervals are necessary to ensure
sufficient precision for the purposes at hand. Similarly, as run times
increased, particle pathway data continued to accumulate, produc-
ing ever closer convergence of N to N. The conclusion from this is
that long run times are also needed to ensure sufficient accuracy
for the desired purposes.

These observations raise a question about feasibility: how much
computing time is needed to compute the NPT-based throughflow
matrix precisely and accurately enough? The answer depends on
the model, both size and connectivity. Our experience suggests that
around 20000 particle pathways is sufficient to compute N to the
point where the component-wise difference between N and N is
less than 1%; that is, �(N, N) ≤ ı = 0.01. For models of the scope
and scale we used, it takes a second for NPT to generate adequate
data on a modern single CPU computer.

6. Discussion

Established methods of ecological network and environ anal-
yses (ENA, NEA) are macroscopic, deterministic and, in the main,

limited to linear systems at steady state. They account for all the
pathways that route substance around a system, and in this they
convey the impression of parcels of material being conservatively
stored and transferred over the network. The new particle-tracking
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imulation (NPT) method of this paper makes these parcels explicit
s particles instead of manifesting aggregate stocks and flows. It
s microscopic, stochastic, and unlimited as to the kind of model
r the dynamic state to which it applies. As such, it appears to
ignificantly complement the conventional methods based on sys-

em theory and input–output analysis. Both approaches account
or all pathways, direct and indirect, inherent in their defining
quations. The stochastic basis of the NPT method aligns with
he unpredictability of nature, and the particle focus matches the

ig. 4. Analysis of the Lagrangian throughflow matrix vs. the Eulerian input–output thro
ropical rain forest ecosystem, El verde National Forest, Puerto-Rico, (Jordan et al., 1972).
l Verde National Forest, Puerto-Rico, (Edmisten, 1970). (c) A generic six-compartment m
Webster et al., 1975). (d) A generic six-compartment freshwater lake ecosystem model, c
itrogen flow in a pine forest ecosystem, Aiken, South Carolina, USA. (f) A generic six-com
975).
lling 220 (2009) 3174–3181 3179

fact that the conserved quantities transferred, energy and mat-
ter, are both physically particulate at their core. The fact that two
methodologies very different in concept and analytical machinery
converge to give comparable numerical results from two ends of
the levels-of-organization spectrum, particulate (Lagrangian) and

aggregate (Eulerian), is compelling. The new theory developed here
can be seen as complementing existing ENA and NEA concepts, and
opening new dimensions to further understanding of ecologically
important stock-and-flow networks.

ughflow matrix for six models. (a) A four-compartment model of calcium flow in a
(b) A five-compartment model of nitrogen flow in a tropical rain forest ecosystem,
odel of mineral flow in a temperate forest ecosystem, composite of literature data,
omposite of literature data, (Webster et al., 1975). (e) A six-compartment model of
partment grassland ecosystem model, composite of literature data, (Webster et al.,
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Fig. 5. Analysis of the Lagrangian throughflow matrix vs. the Eulerian input–output throughflow matrix for six more models. (a) Model of coprophagic web in chesapeake
o a gen
e upho
o rtmen
B

O
n
l
m
p
l
s
2
s
fl

ysters community, (Haven and Morales-Alamo., 1966). (b) Model of mineral flow in
cosystem, composite of literature data, (Hobbie, 1984). (d) A seven-compartment, e
f energy flow in the cedar bog lake ecosystem, (Lindeman, 1991). (f) Twelve-compa
iological Laboratory, Solomons, Maryland.

Simulation-based throughflow analysis has several advantages.
ne mentioned in the text and above is that the investigated model
eed not be linear, or at steady state. These have been important

imitations to prior methods. NPT is capable of simulating ODE
odels of any mathematical form, and based on this N can be com-

uted for systems that change on both short (diurnal, seasonal) and

ong (geologic) time scales. It seems feasible, as has been done in
everal ways for N in the conventional approach (Whipple et al.,
007), to compute N over a time window and advance this window
tepwise to obtain a discrete approximation to a dynamic through-
ow analysis.
eric euphotic oceanic ecosystem,(Webster et al., 1975). (c) Open ocean mixed layer
tic open-ocean, carbon flow model, (Fasham, 1985). (e) A nine-compartment model
t chesapeake bay mesohaline ecosystem, Maryland, unpublished data, Chesapeake

Another point pertaining to the dynamics of natural systems
is that input-to-throughflow mappings in these occur over finite
pathways. Real systems do not remain constant long enough for
pathways reflected in the infinite sums of matrix methodology (10)
to be expressed. The requirement of running power series to infin-
ity to obtain N = (I − G)−1 might therefore inflate the amount of

material exchanged between the compartments. Since the particle-
tracking algorithm simulates real-time substance flow, it offers a
way potentially to evaluate truer activity of the system over time.
Three caveats apply here, however. First, after particle pathways
have been generated in the NPT method, N is computed as in Eqs.
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Webster, J., Waide, J., Patten, B., 1975. Mineral cycling in southeastern ecosystems.
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13) and (12) and must be applied the input vector in the same way
hat N is in Eq. (8), that is,

= Nz. (15)

Second, as shown in Figs. 3–5, N converges to N as the duration
f simulation increases. Short NPT run times would entail similar
rrors in N to those induced in N by any truncation of the contribut-
ng infinite series (10). Third, the NPT methodology is no exception
n having built-in errors that must be addressed and understood for
orrect usage.

In conclusion, NPT simulation of individual particle movements
n networks affords an opportunity to both expand methodol-
gy and broaden understanding of the interplay between micro-
nd macrodynamics (Gattie et al., 2006). Particle tracking allows
dditional resolution of internal activity, and although Lagrangian
pproaches typically require large computational resources, these
an be lessened by sophisticated mathematical innovations, effi-
ient computational algorithms, and modern computing power
tself. In Sections 4.1 and 5.3 it was observed that NPT took
everal seconds of computer time to run small models. With
arge models, such as already exist in many environmental and
iomedical applications, computational expense can become lim-

ting. Therefore, we see no need at present to curtail steady-state
tudies employing standard methods. Such methods may have
imited descriptive power but they have great heuristic power,
nd are already facilitated by readily available software and
oftware packages. The latter includes NETWRK (Ulanowicz and
ay, 1991, http://www.glerl.noaa.gov/EcoNetwrk/), Ecopath with
cosim (Christensen and Walters, 2004; http://www.ecopath.org/),
AND (Allesina and Bondavalli, 2004), a Matlab NEA func-

ion (Fath and Borrett, 2006) and EcoNet (Kazanci, 2007,
ttp://eco.engr.uga.edu/). The evident complementarity of bi-level
tudy is a strong reason to continue both lines of development.
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