MATHEMATICS PRELIMINARY EXAM: FALL, 2009

(1) Consider the following statement about real numbers, which we will call S:

"If $x \leq 0$ and x < y, then there is a z such that $x \cdot z > y$."

- (This happens to be false, but for the purposes of this problem, that is irrelevant.)
- (a) Using the symbols \forall (for all), \exists (there exists), \lor (or), \land (and), \rightarrow (implies), \neg (not), write S in symbolic form. Be sure to include implicit quantifiers.
- (b) Write the negation of S, in verbal form, without using word "not".
- (c) Write the converse of S, in verbal form.
- (2) Work the following Calculus problems.
 - (a) Compute the derivative of $f(x) = \sec^3(\tan(x^2))$.
 - (b) Find the Taylor expansion for $f(x) = \ln(x)$ about a = 2, and determine its radius of convergence.
 - (c) Set up (but do not evaluate) the triple integral needed to compute the integral of $f(x, y, z) = x \sin(y + z)$ over the region R in \mathbb{R}^3 defined by $x \ge 0$, $y + z \ge 2$ and $x^2 + y^2 + z^2 \le 4$.
- (3) Fix $x \in \mathbb{R}$. Using mathematical induction, show that if $x \neq 1$, then for $n = 1, 2, 3, \cdots$ we have

$$x + 2x^{2} + 3x^{3} + \dots + nx^{n} = \frac{nx^{n+2} - (n+1)x^{n+1} + x}{(x-1)^{2}}$$

- (4) Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Give the ε - δ definition for the existence of the limit of f(x) as x approaches x_0 . Then, use the definition to show that $\lim_{x \to 1/4} \sqrt{x} = 1/2$.
- (5) (a) Show that for the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases},$$

we have $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$, but that f is not even continuous at (0,0).

- (b) Give a sufficient condition for a function $g : \mathbb{R}^2 \to \mathbb{R}$ to be differentiable at a point P, in terms of the partial derivatives of g.
- (6) Let V be the vector space over \mathbb{R} spanned by the functions $f_1(x) = 1$, $f_2(x) = \sin^2(x)$, $f_3(x) = \cos^2(x)$, $f_4(x) = \sin(2x)$, and $f_5(x) = \cos(2x)$. Find the dimension $\dim_{\mathbb{R}}(V)$, and exhibit a basis for V over \mathbb{R} .
- (7) If A is the 2×2 complex matrix below, find an invertible complex matrix P for which $P^{-1}AP$ is diagonal.

$$A = \begin{bmatrix} 2 & 1+i \\ 1-i & 3 \end{bmatrix}$$

(8) Let $f : [0,1] \to \mathbb{R}$ and $f_n : [0,1] \to \mathbb{R}$, for $n = 1, 2, 3, \cdots$, be continuous functions. Suppose the sequence $\{f_n\}_{n\geq 1}$ converges uniformly to f. Give the definition of uniform convergence, and using basic properties of integrals and absolute values, show that

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 f(x) \, dx \, .$$