Mathematics Preliminary Exam, Fall 2012

Attempt all problems; they are weighted equally. Write \(\mathbb{N} \) for the set of positive integers and \(\mathbb{R} \) for the set of real numbers.

1. Write the negations of these sentences in as "smooth" a way as possible. (In particular, you may not simply append "It is not the case that ...". Also, you should make explicit any "hidden" quantifiers.)
 (a) There is a real number \(x \) such that for every real number \(y \), \(|x - y| > 1 \).
 (b) A real-valued function that is continuous on a closed interval attains a minimum value on that interval.
 (c) \(3n + 1 \) is even if and only if \(n^2 + 4 \) is prime.

2. Let \(A = \begin{pmatrix} 7 & -3 \\ 1 & 3 \end{pmatrix} \). Find an invertible matrix \(P \) and a diagonal matrix \(D \) with \(P^{-1}AP = D \).
 [You should not have to compute \(P^{-1} \).]

3. Let \(A \) be an \(m \times n \) real matrix. Write \(A^t \) for the transpose of \(A \), and \(N(A) \) for the nullspace of \(A \). Prove that \(N(A^tA) = N(A) \).

4. Suppose \(f : \mathbb{R} \to \mathbb{R} \) satisfies \(f(xy) = xf(y) + yf(x) \) for all \(x, y \in \mathbb{R} \). Prove that \(f(1) = 0 \) and that \(f(u^n) = nu^{n-1}f(u) \) for all \(n \in \mathbb{N} \) and \(u \in \mathbb{R} \).

5. Give an \(\epsilon-\delta \) proof that \(\lim_{x \to 2} \frac{1}{x^2 + 1} = \frac{1}{5} \).

6. Let \(f : X \to Y \) be a (not necessarily invertible!) function, and \(A \subseteq X \).
 (a) Prove that \(A \subseteq f^{-1}(f(A)) \).
 (b) Prove that if \(f \) is injective (one-to-one) then \(A = f^{-1}(f(A)) \).
 (c) Give an example for which \(A \neq f^{-1}(f(A)) \).

7. Prove that the line integral \(\int_C (x + y^2) \, dx + (e^y + 3xy^2) \, dy \) is path-independent; i.e., it depends only on the endpoints of \(C \).

8. Let \(f_n(x) = \frac{nx}{n + x} \) for \(x \in [0, \infty) \) and \(n \in \mathbb{N} \).
 (a) Find a function \(f \) such that \(\{f_n\} \) converges to \(f \) pointwise on \([0, \infty) \).
 (b) Is the convergence uniform on \([0, \infty) \)? Justify your answer.

9. Suppose \(R \) is a commutative ring (with 1), \(I \) is a proper ideal in \(R \), and \(a \in R \). Suppose \(\langle a \rangle + I = R \). Prove that \(a + I \) is a unit (i.e., invertible) in the quotient ring \(R/I \).
 (For half credit: Prove that if \(a \) and \(n \) are relatively prime integers, then \(a + n\mathbb{Z} \) is a unit in \(\mathbb{Z}/n\mathbb{Z} \).)