GRADUATE COURSE IN ANALYSIS

(1) Banach spaces, Hilbert spaces and L^p spaces
 • Banach spaces: definitions, linear functionals and dual of a Banach space.
 • Hahn-Banach Theorem: extension of linear functionals and separation of convex sets.
 • Weak* topology on dual Banach spaces: strong, weak and weak* topologies, the Banach-Alaoglu Theorem.
 • L^p spaces: Hölder and Minkowski inequalities, completeness and dual of L^p, the case of L^∞.

(2) The theory of Distributions.
 • Distributions: definitions, operations, localization and convergence.
 • Tempered distributions: definitions, properties and the Fourier transform.
 • Fundamental solutions to partial differential equations with constant coefficients.
 • Regularity: weak derivatives, Sobolev spaces, approximates to the identity, Sobolev inequalities and Embedding theorems

(3) The Fourier transform
 • The Schwartz space. The Fourier transform on $\mathcal{S}(\mathbb{R})$.
 • The Fourier inversion formula and the Plancherel Theorem.
 • Applications to partial differential equations.
 • The Poisson summation formula and the Heisenberg uncertainty principle.