GRADUATE COURSE IN ANALYSIS

- (1) Banach spaces, Hilbert spaces and L^p spaces
 - Banach spaces: definitions, linear functionals and dual of a Banach space.
 - Hahn-Banach Theorem: extension of linear functionals and separation of convex sets.
 - Weak* topology on dual Banach spaces: strong, weak and weak* topologies, the Banach-Alaoglu Theorem.
 - L^p spaces: Hölder and Minkowski inequalities, completeness and dual of L^p , the case of L^{∞} .
- (2) The theory of Distributions.
 - Distributions: definitions, operations, localization and convergence.
 - Temperated distributions: definitions, properties and the Fourier transform.
 - Fundamental solutions to partial differential equations with constant coefficients
 - Regularity: weak derivatives, Sobolev spaces, approximates to the identity, Sobolev inequalies and Embedding theorems
- (3) The Fourier transform
 - The Schwartz space. The Fourier transform on $\mathcal{S}(\mathbb{R})$.
 - The Fourier inversion formula and the Plancherel Theorem.
 - Applications to partial differential equations.
 - The Poisson summation formula and the Heisenberg uncertainty principle.