Sponsored by: UGA Math Department and UGA Math Club

Team Round / 45 min / 150 points

WITH SOLUTIONS

No calculators are allowed on this test. You do not have to provide proofs; only the answers matter. Each problem is worth 50 points, for a total of 150 points.

For problem 3, the answer should be an exact expression, such as $\pi/2$, $\sqrt{3} + 1$, $8/3$, etc. No approximate answers will be accepted.

Problem 1. (Five secret numbers) Suppose there are 5 numbers whose pairwise sums are

$5, 9, 20, 24, 31, 35, 39, 42, 46, 61$

What are the original 5 numbers? Write them in increasing order.

Answer.

$-3, 8, 12, 27, 34$

Solution. Denote the numbers $a \leq b \leq c \leq d \leq e$. Then

$a + b = 5$, $d + e = 61$, and

$a + b + c + d + e = \frac{5 + 9 + 20 + 24 + 31 + 35 + 39 + 42 + 46 + 61}{4} = \frac{312}{4} = 78$
Therefore,
\[c = (a + b + c + d + e) - (a + b) - (d + e) = 78 - 5 - 61 = 12 \]
The next largest number after \(a + b \) is \(a + c = 9 \), so \(a = 9 - 12 = -3 \). Then \(b = (a + b) - a = 5 - (-3) = 8 \). Similarly, \(e = 34 \) and \(d = 27 \).

Problem 2. (The last man standing) \(n \) people stand in a circle. Then, every second person is excluded until only one is left. For example, with 10 people, the order of exclusion is as follows:
\[2, 4, 6, 8, 10, 3, 7, 1, 9 \]
so the last remaining person is number 5.

Now start with 2005 people. Who will be the last person standing?

Answer. 1963

Solution. Denote the answer for \(n \) by \(J(n) \). Then we have:
\[J(2n) = 2J(n) - 1 \quad \text{and} \quad J(2n + 1) = 2J(n) + 1 \]
Indeed, if there are originally \(2n \) people, the first \(n \) people to be eliminated are numbered 2, 4, 6, 8, \ldots, 2n. The remaining \(n \) people, numbered 1, 3, 5, \ldots, 2n – 1 will essentially be eliminated exactly as if they were numbered 1, 2, 3, \ldots, \(n \). Thus, \(J(2n) = 2J(n) - 1 \); the argument for the other case is similar.
To compute $J(2005)$, read down the first column and up the second:

$$
egin{align*}
2005 &= 2 \cdot 1002 + 1 \\
1002 &= 2 \cdot 501 \\
501 &= 2 \cdot 250 + 1 \\
250 &= 2 \cdot 125 \\
125 &= 2 \cdot 62 + 1 \\
62 &= 2 \cdot 31 \\
31 &= 2 \cdot 15 + 1 \\
15 &= 2 \cdot 7 + 1 \\
7 &= 2 \cdot 3 + 1 \\
3 &= 2 \cdot 1 + 1 \\
J(2005) &= 2 \cdot 981 + 1 = 1963 \\
J(1002) &= 2 \cdot 491 - 1 = 981 \\
J(501) &= 2 \cdot 245 + 1 = 491 \\
J(250) &= 2 \cdot 123 - 1 = 245 \\
J(125) &= 2 \cdot 61 + 1 = 123 \\
J(62) &= 2 \cdot 31 - 1 = 61 \\
J(31) &= 2 \cdot 15 + 1 = 31 \\
J(15) &= 2 \cdot 7 + 1 = 15 \\
J(7) &= 2 \cdot 3 + 1 = 7 \\
J(3) &= 2 \cdot 1 + 1 = 3 \\
J(1) &= 1
\end{align*}
$$

It can also be shown that if $n = (1b_{m-1}b_{m-2} \cdots b_1b_0)_2$ written in binary, then $J(n) = (b_{m-1}b_{m-2} \cdots b_1b_01)_2$.

Problem 3. (Two triangles) In a triangle ABC, vertices are connected to the points A', B', C' which divide the corresponding sides with the ratio 2 to 1, as in the picture, to form a small triangle KLM in the center. What is the ratio of area of ABC to the area of KLM? (The answer must be greater than 1.)

Answer. 7
Solution. Put the triangle ABC in the 3-dimensional space in the plane $x + y + z = 1$ so that the vertices are $(1,0,0)$, $(0,1,0)$, $(0,0,1)$. Then the lines are cut out by planes $2x = y$, $2y = z$ and $2z = x$. Solving for $2x = y$, $2y = z$ and $x + y + z = 1$ gives $(1/7,2/7,4/7)$ and the other two vertices of KLM are obtained by rotating this triple around. Let the side of triangle ABC be x and the side of KLM be y. We have $x^2 = 2$. The side y is the length of the vector

$$(2/7,4/7,1/7) - (1/7,2/7,4/7) = (1/7,2/7,−3/7)$$

Its length can be found using the distance formula:

$$y^2 = \left(\frac{1}{7}\right)^2 + \left(\frac{2}{7}\right)^2 + \left(\frac{−3}{7}\right)^2 = \frac{1^2 + 2^2 + 3^2}{7^2} = \frac{14}{7^2} = \frac{2}{7}$$

The ratio of the areas is

$$\frac{x^2}{y^2} = \frac{2}{2/7} = 7$$

[The ratio of these areas is independent of the shape of the original triangle: when we act on the plane by a linear transformation, all areas are multiplied by the same constant, the absolute value of its determinant.]

Authors. Written by Valery Alexeev and Boris Alexeev ©2005.