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Written test, 25 problems / 90 minutes
October 15, 2011

WITH SOLUTIONS

No calculators are allowed on this test. 10 points for a correct answer, 0
points for an incorrect answer, and 2 points for an answer left blank.

1 Easy Problems

Problem 1. Among families with exactly two children, at least one of which is a boy,
what proportion have two boys? (Assume that genders of children are independent
and equally likely to be male and female.)

(A) 1/4 (B)♥ 1/3 (C) 1/2 (D) 2/3 (E) 3/4

Solution. Listing the possible outcomes of the gender of the two children as ordered
pairs, ordered by age, there are three equally likely outcomes which involve at least
one boy: (B,G), (G,B), (B,B). Since one of those three equally likely outcomes is a
success, the answer is 1/3.

Alternative solution: Pick a family at random. If we let X be the event that the
family has two boys and Y be the event that the family has at least one boy, then
the answer to the question is precisely P (X|Y ), read as “the probability of X given
Y .” The formula for conditional probability is P (X|Y ) = P (X and Y )/P (Y ). In this
case, we see that event X guarantees event Y , so P (X and Y ) = P (X) = 1/4. Also,
event Y is exactly the complement of the event that the family has two girls, which

occurs with probability 1/4, so P (Y ) = 3/4. Thus, P (X|Y ) =
1/4

3/4
=

1

3
.

Problem 2. A square piece of paper is subdivided into four
congruent squares by a horizontal line and a vertical line, as
pictured. The smaller squares are labeled 1, 2, 3, and 4, as
shown. You are allowed to fold the paper once over the vertical
line—left to right or right to left—and once over the horizontal
line—top to bottom or bottom to top—in either order. After
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two folds, the smaller squares will be stacked up, and, if we read top to bottom, we
get the numbers in some order. How many different permutations of 1, 2, 3, and 4
can we get?

(A) 2 (B) 4 (C)♥ 8 (D) 12 (E) 24

Solution. It is easy to see that we can get 1 on the top with either 243 or 342 right
below it. (No folding can get 1 immediately atop 4.) By symmetry, there are 4×2 = 8
possible accessible permutations.

Problem 3. Suppose f(x) and g(x) are quadratic polynomials, all of whose coef-
ficients are nonzero. What is the minimum possible number of nonzero coefficients
that f(x)g(x) can have?

(A) 1 (B)♥ 2 (C) 3 (D) 4 (E) 5

Solution. Clearly the coefficient of x4 and the constant coefficient must be nonzero.
However, we can easily arrange for the other three coefficients to vanish: Consider
the example

(x2 +
√
2x+ 1)(x2 −

√
2x+ 1) = x4 + 1 .

(This factoring is essential for calculus students who want to find a function whose
derivative is 1/(x4 + 1)!)

It is also possible to have an example with integer coefficients:

(x2 + 2x+ 2)(x2 − 2x+ 2) = x4 + 4.

Problem 4. A long row of doors, numbered 1, 2, 3, . . . , 100, are all open. Eddie
comes along and closes every other door, beginning with the first. Eleanor closes every
third door, beginning with the first. Note: Any door that is already closed remains
so. This continues until the twenty-fourth person, Eli, closes every twenty-fifth door,
beginning with the first. Clearly, the second door is still open. What is the next
numbered door that is open?

(A) 27 (B) 28 (C) 29 (D)♥ 30 (E) 31

Solution. Subtract 1 from each of the door numbers. Then all doors whose number
is divisible by 2, 3, . . . 25 are closed. Clearly, the next prime number 29 is (other than
1) the first one that is open. Returning to the original numbering scheme, the next
open door is 30.

Problem 5. Four distinct points A, B, C, and D are chosen at random from 2011
points evenly spaced on a circle. What is the probability that AB and CD intersect?



(A) 1/4 (B)♥ 1/3 (C) 680/2011 (D) 1/2 (E) 3/4

Solution. The 2011 is a red (and black) herring. If you pick points A, B, C, D in

order around the circle, there are 1
2

(

4
2

)

= 3 pairs of pairs (AB, CD; AC, BD; AD,
BC). Only for the pair AC, BD do the two line segments intersect. (For example,
in order for AB to intersect CD, C must lie in one of the arcs from A to B and D
must lie in the other.) Thus, given 4 random points on the circle, one of the three
(equally likely) pairs of line segments intersects.

Problem 6. What is the slope of the line that bisects the angle in the first quadrant
formed by the x-axis and the line through the origin with slope 2?

(A)
1

2
(B) 1 (C)♥

√
5− 1

2
(D) 4/3 (E)

√
5 + 1

2

Solution. Say tan θ = 2. Letting φ = θ/2, we have
2 tanφ

1− tan2 φ
= 2, and so tan2 φ+

tanφ− 1 = 0. Thus, tanφ =
−1±

√
5

2
. We discard the negative solution.

Problem 7. Let O(n) denote the sum of the odd digits of n (by this we mean the
digits of the numeral that are odd numbers, not the ones in odd decimal places).
What is the sum

O(1) +O(2) + · · ·+O(100) ?

(A) 251 (B) 276 (C) 500 (D)♥ 501 (E) None of the above

Solution. Note that O(1) + O(2) + · · · + O(9) = 25, so in each group of ten, the
sum of the units digits is 25. The sum of the tens digits gives us another ten groups
of 25, and the hundreds digit of 100 gives us an additional 1. Thus, the sum is
(10 + 10) · 25 + 1 = 501.

Problem 8. How many monomials xaybzcwd are there with the requirement that
a, b, c, d are nonnegative integers that sum to 10?

(A) 42 (B) 264 (C)♥ 286 (D) 1001 (E) None of the above

Solution. Our favorite way of counting here is to put 10 + (4 − 1) dots in a row
and mark 3 of them with an X. The number of dots before the first X will be a, the

number of dots between the first and second X’s will be b, etc. Thus, there are
(

13
3

)

= 286 such monomials.



Problem 9. A regular hexagon, as shown, with sidelength 1 “rolls” along a line.
What is the length of the path that the vertex P travels as the hexagon rolls through
one full cycle?

P

(A) π (B) 6 (C)
π

3
(4 +

√
3) (D)♥

2π

3
(2 +

√
3) (E) 2π

(

1 +
1√
3

)

Solution. The path of P consists of five arcs with central angle π/3, with respective

radii 1, 2 sin(π/3) =
√
3, 2,

√
3 and 1. Thus, the length is

π

3

(

4 + 2
√
3).

P

Christopher Wren found the arclength of a cycloid in 1658 by doing this problem
for an n-gon and taking the limit (in the style of Archimedes).

Problem 10. Suppose 3n has 56 positive divisors, 6n has 70 positive divisors, and
9n has M positive divisors. How many different possible values of M are there (that
can be achieved by some positive integer n)?

(A) 0 (B) 1 (C) 2 (D)♥ 3 (E) 4

Solution. Let’s start with the prime factorization n = 2k3ℓpq11 . . . pqss (where pi are
distinct primes larger than 3). For each prime p appearing in this factorization with
exponent q, we get a divisor of n by choosing any exponent between 0 and q. Thus,
the number of divisors of n is (k+1)(ℓ+1)D, where D = (q1 +1)(q2+1) . . . (qs +1).
Similarly, the number of divisors of 3n will be (k+1)(ℓ+2)D, the number of divisors
of 6n will be (k+2)(ℓ+2)D, and the number of divisors of 9n will be (k+1)(ℓ+3)D.

Thus, if we let m = (ℓ+2)D, we have (k+1)m = 56 and (k+2)m = 70, so
k + 2

k + 1
=

5

4
,

so k = 3. Therefore, m = (ℓ+ 2)D = 14, where ℓ ≥ 0 and D ≥ 1.
There are three possible solutions to this equation, namely ℓ = 0 and D = 7;

ℓ = 5 and D = 2; and ℓ = 12 and D = 1. Each of them leads to a different value of
M , namely 84, 64, and 60, respectively.

Specific examples for n are 23 · 56, 23 · 35 · 5, and 23 · 312, respectively.



2 Medium Problems

Problem 11. Suppose f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 is a real polynomial
all of whose coefficients are nonnegative integers. Suppose f(1) = 17 and f(20) =
496,145. What is a3?

(A) 0 (B) 1 (C)♥ 2 (D) 3 (E) 8

Solution. Since all the coefficients of f(x) are nonnegative and f(1) = 17, we know
that all aj ≤ 17. Now, f(20) = an(20

n) + · · · + a1(20) + a0, so a0 ≡ f(20) ≡ 5
(mod 20). Since we know a0 ≤ 17, we conclude that a0 = 5. Now subtract a0 = 5
and divide by 20:

24,807 =
f(20)− 5

20
= an(20)

n−1 + · · ·+ a2(20) + a1 ,

Mod out by 20 again, and we get a1 ≡ 7 (mod 20), and hence a1 = 7. Continuing,

1240 =
f(20)− 7(20)− 5

202
= an(20)

n−2 + · · ·+ a3(20) + a2 ,

so a2 ≡ 1240 ≡ 0 (mod 20). As before, a2 = 0. Finally,

62 =
f(20)− 7(20)− 5

203
= an(20)

n−3 + · · ·+ a4(20) + a3 ,

so a3 ≡ 2 (mod 20) and a3 = 2. (For completeness, going one more step, we see that
this is a polynomial of degree 4 with a4 = 3, namely 3x4 + 2x3 + 7x+ 5.)

Problem 12. In the figure pictured, AD and PQ are diameters that are perpendic-
ular to one another. If AB = 8 and BC = 5, what is the area of the circle?

A

B

C

P

D

Q

O

(A) 30π (B) 36π (C) 45π (D)♥ 52π (E) 56π

Solution. Although we can do this with the law of sines, it is most
instructive to use the “power” of a point: Whenever B is the inter-
section of AC and PQ, with A, C, P , and Q on a circle, we have
(AB)(BC) = (PB)(BQ). [Proof: △ABP is similar to △QBC.] If we
let y = OB and r = OP (the radius), then we have y2+r2 = 64 and (r+y)(r−y) = 40,
so, adding the two equations, we obtain r2 = 52, so the area of the circle is 52π.



Problem 13. The number 36 has the unusual property that 36 dots can be arranged
to form either an equilateral triangle or a square:

If a and b are the next larger integers with this property, what is
√
ab?

(A) 1225 (B) 2011 (C)♥ 7140 (D) 44100 (E) There are no more
numbers with this property.

Solution. In order to arrange x dots in a triangle, we need x = 1 + 2 + · · · + n =
n(n+ 1)

2
for some natural number n. To arrange them in a square, we need x = k2

for some natural number k. Since n and n+1 have no common factors (when n > 1),

in order to have
n(n + 1)

2
= k2, either (if n is even) n/2 and n + 1 must be perfect

squares or (if n is odd) n and (n+1)/2 must be perfect squares. Either way, we must
find two squares so that one differs from the double of the other by 1. Consider the
list of perfect squares:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, . . .

We see that 9 = 2 · 4 + 1, so n = 8 gives x = 36, which is the example with which we
started. Proceeding, we find 49 = 2 ·25−1, so n = 49 gives a = 49 ·50/2 = 1225 = 352

and 289 = 2 · 144+1, so n = 288 gives b = 288 · 289/2 = 144 · 289 = (12 · 17)2 = 2042.
Thus,

√
ab = 35 · 204 = 7140.

See also Problem 25 for more information about the general family of equations
x2 − ky2 = ±1. This problem is the case k = 2, while that problem is k = 19.

Problem 14. Among families with exactly two children, at least one of which is a
boy born on a Tuesday, what proportion have two boys? (Assume as before that
genders of children are independent and equally likely to be male and female, and
similarly for day of the week of birth.)

(A) 1/3 (B) 4/7 (C)♥ 13/27 (D) 1/2 (E) 147/196

Solution. We enumerate the possible outcomes of the gender and day of birth of
the two children as ordered pairs, ordered by age, such as (BTu,GF) for a boy born
on a Tuesday followed by a girl born on a Friday. We are given that at least one of
the coordinates is BTu. There are 14 outcomes with BTu in the first coordinate and
14 outcomes with BTu in the second coordinate. Those two sets overlap in exactly
one outcome, leaving a total sample space of 14 + 14 − 1 = 27 outcomes. There
are 7 successes with BTu in the first coordinate, 7 successes with BTu in the second
coordinate, and again those sets overlap in exactly one outcome, leaving a total of
7 + 7− 1 = 13 successes and yielding the answer of 13/27.



Alternative solution: Utilizing the same approach in Problem 1, let X be the event
that the family has two boys and let Y be the event that at least one of the children is
a boy born on a Tuesday. Note that the event (X and Y ) is precisely the intersection
of the event X and the event that at least one child is born on a Tuesday (call it T ).
This alternate formulation is the intersection of two independent events, and therefore
P (X and Y ) = P (X)P (T ). Of course P (X) = 1/4, and T is the complement of the
event that neither child was born on a Tuesday, so P (T ) = 1 − (6/7)2 = 13/49, and
hence P (X and Y ) = 13/196. Also, we see that Y is the complement of the event
that neither child is a boy born on a Tuesday, so P (Y ) = 1 − (13/14)3 = 27/196.
Plugging these values into the conditional probability formula gives the answer 13/27.

Problem 15. Suppose x2 + y2+6x− 4y− 12 = 0. What is largest value that 2x+ y
can have?

(A) 4
√
5− 4 (B) 5 (C) 7 (D)♥ 5

√
5− 4 (E) 4

√
5

Solution. Note first that (x, y) lies on the circle (x+3)2+(y−2)2 = 25, i.e., a circle
of radius 5 centered at (−3, 2). Imagine various parallel lines 2x+ y = c moving from
left to right; we’ll get the largest possible value on the circle when the line intersects
the circle and is as far to the right as it can be. This means it must be tangent. Since
the line has slope −2, the line segment from (−3, 2) to the point of contact (x, y)
must have slope 1/2. From the equations

y − 2

x+ 3
=

1

2
and (x+ 3)2 + (y − 2)2 = 25

we now get 5
4
(x+ 3)2 = 25, so x+ 3 = 2

√
5 and y − 2 =

√
5, and we obtain

2x+ y = 2(2
√
5− 3) + (2 +

√
5) = 5

√
5− 4 .

Problem 16. Consider the point P = (a, b) with 0 ≤ a ≤ 1, 0 ≤ b ≤ 1. We picture
it in the unit square. It has the following properties:

(i) If the square is subdivided into 9 smaller squares, as
pictured, then P is in the lower left square.

(ii) If the lower left square is subdivided into 9 smaller squares,
P is in the upper left square.

(iii) If that square is subdivided into 9 smaller squares, P is
in the upper right square.

(iv) If that square is subdivided into 9 smaller squares, P is
in the lower right square.



The subdivision process continues like this, and P continues to be in the lower left,
upper left, upper right, lower right squares, forever. What is a + b? (The square is
oriented so that a increases from left to right and b increases from bottom to top, as
usual.)

(A) 1012/9999 (B) 1/3 (C) 10/27 (D)♥ 2/5 (E) 1/2

Solution. The fact that P is in the lower left square the first time tells us that
0 ≤ a, b ≤ 1/3. In other words, the ternary (base three) “decimal” expansion of a
and b each begin with 0. Each successive subdivision tells us the next digit: For
example, the second digit of a is 0 and the second digit of b is 2. Indeed, a = 0.0022
and b = 0.0220. Next, we add (in base three) and then convert to a standard fraction:
Noting there will be no carrying in the repeats, x = a + b = 0.1012. Now we use the
usual technique to turn this into a fraction:

34x = 1012three + x = (27 + 3 + 2) + x = 32 + x , so x =
32

80
=

2

5
.

Problem 17. Notice that the graphs y = ex and y = x do not intersect in the first
quadrant. If a is the smallest positive number so that y = ex and y = xa do intersect
in the first quadrant, which of the following is true?

(A) There is no smallest a because y = ex intersects y = xa for all a > 1.
(B) a = 2 (C)♥ a = e (D) a = π (E) There is no smallest a because y = ex

fails to intersect y = xa for all a > 1.

Solution. Notice that y = ex and y = xe intersect at x = e, so this rules out (D)
and (E). The graphs intersect at x if and only if x = a ln x, which happens if and

only if
ln x

x
=

1

a
. If we graph the function f(x) =

ln x

x
, we see that f(x) → −∞ as

x → 0+ and f(x) → 0 as x → ∞. It has a global maximum at x = e (as can easily
be checked from f ′(x) = (1 − ln x)/x2), and f(e) = 1/e. This means that we must

have
1

a
≤ 1

e
, so a ≥ e.

Problem 18. Five circles of radius 1 are packed tightly so that their centers form
the vertices of a regular pentagon. Which of the following is closest to the radius of
the smallest circle that will contain them all?

(A) 2.5 (B) 2.6 (C)♥ 2.7 (D) 2.8 (E) 3

Solution. The radius of the circumscribed circle is 1+csc(π/5). Since

sin(π/5) =

√

5−
√
5

8
(see below), it follows that

csc
π

5
=

2
√
2

√

5−
√
5
=

√
2
√

5 +
√
5√

5
=

√
2

√

1 +
1√
5
.

1



Now,
√
5 ≈ 2.24, so we can approximate the last by

√
2
√

3/2 =
√
3 ≈ 1.73, and so

the radius of the circle is approximately 2.73. (In fact, the calculator value is 2.70.)
Let θ = π/5. To derive the formula for sin θ, the most elegant approach is to

consider the complex number ω = cos θ + i sin θ. By DeMoivre’s formula, ω5 =
(cos θ+i sin θ)5 = cos(5θ)+i sin(5θ) = −1, so, by the binomial theorem, the imaginary
part gives us

sin5 θ − 10 sin3 θ cos2 θ + 5 sin θ cos4 θ = sin θ(sin4 θ − 10 sin2 θ cos2 θ + 5 cos4 θ) = 0 .

Letting u = sin2 θ, we now have u2 − 10(1 − u)u + 5(1 − u)2 = 16u2 − 20u + 5 = 0,

so u =
5±

√
5

8
. Since 0 < θ < π/4, sin2 θ < 1/2, so we must have u =

5−
√
5

8
, so

sin θ =

√

5−
√
5

8
, as required.

Problem 19. Five circles of the same radius are packed in a square of unit side
length. (That is, the interiors of the circles lie strictly within the square and do not
intersect each other. Note that they are not necessarily packed exactly as in the
previous problem.) What is the largest possible radius of the circles?

(A) 2
4+3

√
2+

√
6

(B) 1
5

(C)♥ (
√
2−1)
2

(D) 1
4

(E) None of the above

Solution. Consider a putative packing with a radius r. Simply because the cir-
cles cannot leave the square, their centers cannot be within r of the boundary, thus
confining them to a (1− 2r)× (1− 2r) square.

Split this smaller square into four even smaller squares (quarters, so to speak) of
the same size, namely (1/2 − r)× (1/2 − r). By the pigeonhole principle, some two
of the five centers must lie in the same quarter. The farthest apart they can be is if
the centers lie at opposite corners, so we get that 2r (the minimal possible distance
between conters) is at most (1/2− r)

√
2 (the diagonal of this square). It follows that

r ≤ (
√
2−1)
2

.
This radius may be achieved by packing one circle in each corner and one more

at the exact center of the square.

Problem 20. Consider a Pascal-like triangle with the numbers 0, 1, 2, 3, . . . , going
down the edges, as shown:

0
1 1

2 2 2
3 4 4 3

4 7 8 7 4
5 11 15 15 11 5



Let f(n) denote the sum of the entries in the row that begins with n. When we divide

f(100)

f(50)

by 25, what is the remainder?

(A)♥ 0 (B) 2 (C) 3 (D) 24 (E) None of the above

Solution. If we make a “usual” Pascal-type triangle by putting 1’s on the outside
and let g(n) denote the sum of the entries of the nth row of this modified triangle,
then we see that g(n) = 2g(n − 1) and g(0) = 2. Therefore, g(n) = 2n+1 and
f(n) = g(n)− 2 = 2n+1 − 2 = 2(2n − 1). Therefore,

f(100)

f(50)
=

2(2100 − 1)

2(250 − 1)
= 250 + 1 .

Now, by Fermat, 2φ(25) ≡ 1 (mod 25), where φ(25) is the number of integers between
1 and 24, inclusive, relatively prime to 25; it is easy to check that φ(25) = 20, and
so 250 ≡ 210 ≡ −1 (mod 25). (Even easier, 210 = 1024 ≡ −1 (mod 25).) Therefore,
250 + 1 ≡ (−1)5 + 1 ≡ 0 (mod 25).

Problem 21. You start at vertex A of a pentagon. It is equally likely that you
move along either of the adjacent edges. You continue, with either of the adjacent
edges always having equal probability. You stop as soon as you’ve visited each vertex.
What is the probability that you stop at the adjacent vertex, B? (Remark: You can
assume the tour stops after a finite number of steps.) A

B(A) 1/6 (B) 1/5 (C)♥ 1/4 (D) 5/18 (E) 1/3

Solution. First, consider the pentagon labeled as shown. Let S
be the event that the tour concludes at vertex B. Clearly, for S to
occur we must start our tour with the segment AE, so P (S) =
P (S andAE) = P (S|AE)P (AE) = 1

2
P (S|AE), so P (S|AE) =

2P (S). Next, having gotten to E, there are three possibilities for
the next two moves: EAE, EDE, and EDC. Note that

P (S and AEDC) = P (S|AEDC)P (AEDC) = 1/8 ;

A

B

C D

E

here we use the hypothesis that the tour is known to terminate in a finite number
of steps, so, once having arrived at C, it can only conclude at B. (One can prove
that with probability 1 the tour does terminate after a finite number of steps.) Next,
P (S and AEAE) = P (S|AEAE)P (AEAE) = P (S|AE)P (AEAE) = 2(1

8
)P (S) =

1
4
P (S). Similarly, P (S and AEDE) = 1

4
P (S). In sum, we have

P (S) = P (S and AEAE) + P (S and AEDE) + P (S and AEDC) = 1
2
P (S) + 1

8
,



from which we conclude that P (S) = 1/4. (Amazingly, it is equally likely that the
tour terminates at any of the four vertices B, C, D, and E.)

Alternative solution: Consider any vertex P of the pentagon, other than the starting
vertex A. In order to you to stop at vertex P , you must first visit one of the neighbors
of P and then walk all the way around the pentagon and reach P again.

Note that for every vertex P , one of its neighbors will be visited at some point.
Consider the first such instant. At that point, it no longer particularly matters what
vertex P is, nor what path was taken so far. After that point, the only way P will be
the final vertex is if the walk walks all the way around the pentagon and hits P “from
the other side” before it hits P “from this side”. This argument was independent of
the non-starting vertex P , hence all of them are equally likely and the answer is 1/4.

3 Hard Problems

Problem 22. There exist two distinct positive integers x and y so that

( x

82

)2

+
( y

82

)2

= 2.

What is |x− y|?
(A) 18 (B) 24 (C)♥ 36 (D) 62 (E) None of the above

Solution. We seek a rational point (x, y) on the circle

x2 + y2 = 2.

There is a standard method for finding such points, assuming that a single rational
point is already known on the circle. Luckily, it’s not difficult to provide one, eg
P = (−1,−1).

The line through point P with rational slope m has equation y = mx+m− 1. If
we try to intersect this line with the circle, we find that we must have

x2 + (mx+m− 1)2 = 2,

or equivalently
(1 +m2)x2 + (2m+ 2m2) + (m2 + 2m− 1).

We know one solution to this equation, namely x = −1, so by Viète’s formula we can
compute the other solution is

−2m+ 2m2

1 +m2
+ 1 =

1− 2m−m2

1 +m2
.

Plugging this back into the equation for y, we see that the overall solution is
(

1− 2m−m2

1 +m2
,
1 + 2m−m2

1 +m2

)

.



Thus we have found a rational point on the desired circle. In fact it turns out that
all rational points are obtained this way for some choice of m. (To see this, note that
if you connect any rational point with point P , the resulting line has rational slope.)

We seek a solution with denominator 82, so we plug in m = 9 and get

(−98,−62).

The problem wanted positive solutions, so they are 62 and 98, which have a difference
of 36.

Problem 23. A pentagon ABCDE, as pictured, has the property that each of the
triangles △ABC, △BCD, △CDE, △DEA, and △EAB has area 1. Find the area
of the entire pentagon.

A B

C

D

E

(A)
3 +

√
5

2
(B) 3 (C) 2 +

√
5

2
(D)♥

5 +
√
5

2
(E) 4

Solution. First we note that since △ABE and △ABC have
area 1 and the same base AB, CE is parallel to AB. Similarly,
BE is parallel to CD and BD is parallel to AE. As the diagram
indicates, we will know the area of the pentagon once we know
the area of △BED. First, since ABPE is a parallelogram, the
area of △BEP is 1. Denote the area of △BDE by x. Then the
area of △PCD is 1− x, and so the area of △PBC is x as well.

A B

C

D

E
P

But
area △EPD

area △PCD
=

x

1− x
=

EP

PC
=

area △EPB

area △PCB
=

1

x
.

This gives us the equation x2+x−1 = 0, so x =
−1 +

√
5

2
(not a huge surprise when

pentagons are involved!). At last, the area of pentagon is 3 + x =
5 +

√
5

2
.

Alternative solution: Do the calculation for a regular pentagon, assuming from the
statement of the problem that the answer is independent of the shape of the pentagon.
Indeed, it is not hard to show that any pentagon with the given property can be
obtained by an affine transformation of a regular pentagon (and affine transformations
preserve ratios of areas). As before, given area △ABE = 1 = area △BCD, we
need to find area △BDE. Since each interior angle of a regular pentagon is 108◦,
∠ABE = ∠CBD = 36◦, and so ∠EBD = 36◦ as well. From the same reasoning, it
follows that ∠DEC = ∠BEC = 36◦, so△BEP ∼= △BEA also has area 1. Therefore,
area △DEP = DP/PB = DE/BE (by virtue of the fact that EC bisects ∠BED).

But, by the law of sines,
DE

BE
=

sin 36◦

sin 72◦
=

1

2 cos 36◦
=

√
5− 1

2
(see the solution of

Problem 18). So, as before, the area of the pentagon is 3 +

√
5− 1

2
=

5 +
√
5

2
.



Problem 24. Andy and Harrison are betting on a seven-game series between the
Astronauts and the Hedgehogs. Before each game, they agree to an even-odds bet
for some specified amount (possibly zero, possibly much more) on that single game.
(The amount of the bet will depend on the score.)

They have structured their bet amounts in advance so that although they are
betting on individual games, the sequence of bets is equivalent to a single $1 bet on
the entire series. That is, no matter with what score the Astronauts win (4-0, 4-1,
4-2, or 4-3), Andy will win exactly $1, and similarly if the Hedgehogs win, Harrison
will win exactly $1.

How much are they betting on the first game? (Assume, if necessary, that money
is infinitely divisible.)

(A)♥ $ 5
16

(B) $1
7

(C) $1
4

(D) $ 1
14

(E) $0

Solution. (We shall drop all $ signs in this solution.)
This problem can be solved by thinking backwards. If the score is 3-3, then the

net amount of money exchanged must be 0 and the bet must be 1, because that is the
only way of insuring the correct payoffs after this game (which will end the series).
If the score is 3-2, then the net amount of money exchanged must be 1

2
and the bet

must be 1
2
, so that if the leading team wins the payoff is 1 while if it loses the net

amount of money exchanged is 0. (We know the latter must be true by the previous
argument.) We could continue this reasoning or we could summarize it in a table:

0 1 2 3 4
0 0 5/16 5/8 7/8 +1
1 −5/16 0 3/8 3/4 +1
2 −5/8 −3/8 0 1/2 +1
3 −7/8 −3/4 −1/2 0 +1
4 −1 −1 −1 −1

This table represents the net amount of money that should be exchanged for any
given score in the series. The setup of the problem is equivalent to the fact that the
payoffs at the very right and the very bottom are +1 and −1 respectively, while each
internal node is the average of the node below it and to the right of it.

By the way the table is constructed, it is clear that the bet amounts are uniquely
determined. So we just read off that the first bet must be for 5

16
.

Problem 25. The Battle of Hastings (October 14, 1066): “The men of Harold stood
well together, as their wont was, and formed nineteen squares, with a like [positive]
number of men in every square thereof, and woe to the hardy Norman who ventured
to enter their redoubts; for a single blow of a Saxon [warrior] would break his lance
and cut through his coat of mail.. . .When Harold threw himself into the fray the
Saxons were one mighty square of men, shouting the battle-cries, ‘Ut!’ ‘Olicross!’,
‘Godemite!’.”

What is the smallest number of Saxons (counting Harold) that could have been
at the battle?



(A) 15,876 (B)♥ 28,900 (C) 31,940 (D) 33,856 (E) None of the above

Solution. This problem is asking us to find the smallest positive integers x and y
such that x2 − 19y2 = 1. This is an example of a Pell equation. The solutions to the
equation x2 − 19y2 = ±1 give us all the numbers of the form x + y

√
19, x, y ∈ Z,

whose multiplicative inverse is again of that form. How many such numbers are there,
and how do we find them? Well, there are infinitely many, but they are all of the
form (x0 + y0

√
19)k (for some “minimal” x0 and y0) as k ranges over the integers.

To find this minimal element, we use the following result: Let n be a square-free
positive integer congruent to 2 or 3 mod 4. Let d be the period of the continued
fraction expansion for

√
n. Then all numbers we seek are of the form ±(pd + qd

√
n)k

where k is an integer and pd, qd are the dth convergents.
Why should we think continued fractions are the way to proceed? Note that the

continued fraction of
√
n is of the form

√
n = a1 +

1

a2 +
1

a3 +
1

a4 +
.. .

(where all the ai’s are positive integers). The convergents pi/qi are the result of
truncating this process above at the ith step. Hence, the continued fraction expansion
of

√
19 will give good approximations of

√
19. Once we have done that, we will have

a good approximation of p2k = 19q2k + 1.
The only remaining question would be why the particular convergent listed in the

theorem is the way to go. Short answer: Minimality. Longer answer: One can show
that if x and y are positive integers such that x2 − ny2 = 1, then x/y is a convergent
of

√
n. Thus, if one is truly skeptical, one can check each convergent until the first

solution is obtained.

So consider the continued fraction expansion of
√
19:

i αi ⌊αi⌋ = ai αi − ai =
1

αi+1
pi qi

−1 0 1
0 1 0

1
√
19 4

√
19− 4 4 1

2
√
19+4
3

2
√
19−2
3

9 2

3
√
19+2
5

1
√
19−3
5

13 3

4
√
19+3
2

3
√
19−3
2

48 11

5
√
19+3
5

1
√
19−2
5

61 14

6
√
19+2
3

2
√
19−4
3

170 39

7
√
19 + 4 8

√
19− 4 1421 326

Thus, our fundamental unit is 170 + 39
√
19. Hence we see that, counting Harold,

there were 1702 = 392 · 19 + 1 = 28,900 Saxons at the Battle of Hastings.



Authors. Written by Ted Shifrin, with significant help from Mo Hendon. Alex
Rice contributed problems 1 and 14, having learned of them from Colm Mulcahy.
Kate Thompson, Derek Ponticelli, and Tyler Kelly contributed problems 25, 11, and
21 respectively. Boris Alexeev contributed problems 19, 22, 24.

Sources. Problem 25 was adapted by Kate Thompson from Neukirch’s Algebraic
Number Theory. Pell’s equation and continued fractions are two very deep, very old
topics in mathematics. We recommend, among other resources, the following article
by Henrik Lenstra in the Notices of the AMS :

http://www.ams.org/notices/200202/fea-lenstra.pdf

We thank Ed Azoff for his elegant solution of Problem 21. A number of problems
were taken from or inspired by AHSME and USAMO.

http://www.ams.org/notices/200202/fea-lenstra.pdf
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