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Written test, 25 problems / 90 minutes
October 20, 2012

WITH SOLUTIONS

No calculators are allowed on this test. 10 points for a correct answer, 0
points for an incorrect answer, and 2 points for an answer left blank.

1 Easy Problems

Problem 1. Calculate the sum

−1−2−3+4+5+6−7−8−9+10+11+12−· · ·+2008+2009+2010−2011−2012 .

(A) −1017 (B)♥ −1008 (C) −992 (D) −216 (E) None of the above

Solution. The sum as far as 2010 consists of 335 groups of six numbers each, each
group totalling to −(1+2+3)+(4+5+6) = 9. Thus, the sum is 9·335−(2011+2012) =
3015− 4023 = −1008.

Problem 2. Frank owes $5000 and Michael owes $3000. If Frank had 2/3 of Michael’s
money in addition to his own, he could exactly pay all his debts; if Michael had 1/2
of Frank’s money in addition to his own, he could pay all but $100 of his debts. What
is the total amount of money Frank and Michael have?

(A) $4000 (B) $4600 (C)♥ $5200 (D) $5250 (E) None of the above

Solution. Let F be the amount of money Frank has (in dollars), and M the amount
Michael has. We have

F +
2

3
M = 5000 and

1

2
F +M = 2900 .

Solving, we find M = 600 and F = 4600, so M + F = 5200.

Problem 3. A circle of radius 6 has its center on a circle of radius 5. How far apart
are the two points of intersection?



(A) 3
√
2 (B) 24/5 (C) 5 (D) 5

√
2 (E)♥ 48/5

Solution. We assume the smaller circle has its center at the origin. We may as well
put the center of the larger circle at the point (0, 5). We want the intersection points

(±x, y) of the circles x2 + y2 = 25 and x2 + (y− 5)2 = 36. By algebra we find y =
7

5
,

and so x = ±1

5

√
625− 49 = ±24

5
. Thus, the distance between the two is

48

5
.

Problem 4. One pipe can fill a tank in 45 minutes and another can fill it in 30
minutes. If these two pipes are open and a third pipe is draining water from the
tank, it takes 27 minutes to fill the tank. What is the time, in minutes, that it takes
the third pipe alone to drain a full tank?

(A) 48 (B)♥ 54 (C) 60 (D) 641

2
(E) None of the above

Solution. In one hour, pipe 1 fills 4/3 of a tank and pipe 2 fills 2 tanks. Suppose
pipe 3 empties x tanks in one hour. Since 27/60 = 9/20, we have 9

20
(4
3
+ 2− x) = 1,

and so x = 10/9. That is, it takes pipe 3 9/10 hours, i.e., 54 minutes, to drain a full
tank.

Problem 5. A sphere is inscribed in a truncated right circular cone (so that it is
tangent at the top, the bottom, and along the lateral surface of the cone). If the radii
at the top and bottom are 1 and 9, what is the radius of the sphere?

(A)
√
5 (B)♥ 3 (C) 2

√
5 (D) 9/2 (E) 5

Solution. Recall that if a pointX is external to a circle, the two line
segments containing X tangent to the circle have equal length. We
then obtain a right triangle with height h, base 8, and hypotenuse
10. So h = 6 and the radius of the sphere is 3. 8

h

Problem 6. Two real numbers are chosen at random between 0 and 10. What is the
probability that their sum is greater than 8?

(A) 32% (B) 55% (C) 60% (D) 62.8% (E)♥ 68%

Solution. We are considering the square 0 ≤ x, y ≤ 10 in the xy-plane. It has area
100. We wish to discard the triangle given by x + y ≤ 8, which has area 32. This
leaves us with an area of 68, which accounts for 68% of the possibilities.

Problem 7. Let A, B, and C be the real numbers defined by

A =

√

2 +

√

2 +
√
2 + . . .

B =

√

6 +

√

6 +
√
6 + . . . , and

C =

√

12 +

√

12 +
√
12 + . . . .

Find A+B + C.



(A) 6 (B)♥ 9 (C) 3π (D) 5 + 2
√
5 (E) 7

√
2

Solution. If a > 0 and x =

√

a +
√

a +
√
a+ . . ., then x2 = a+ x, so

x = 1

2

(

1 +
√
1 + 4a

)

. Thus,

A +B + C = 1

2

(

(1 +
√
1 + 4 · 2) + (1 +

√
1 + 4 · 6) + (1 +

√
1 + 4 · 12)

)

=
1

2
(3 + 3 + 5 + 7) = 9 .

Problem 8. A regular hexagon is inscribed in the unit circle and weights 1, 2, 3, 4,
5, 6 are placed consecutively at the vertices. How far from the center of the circle is
the center of mass?

(A) 0 (B) 1/4 (C)♥ 2/7 (D)
√
3/4 (E) 3/7

Solution. Put weight j at vertex vj , as pictured. Note
that v1+v3 = v2 and v4+v6 = v5 because, e.g., cos 60

◦ =
1/2. Then, since vj+3 = −vj for j = 1, 2, 3,

v1 + 2v2 + 3v3 + 4v4 + 5v5 + 6v6 = 3(v4 + v5 + v6) = 3(2v5) .

Since the total mass is 1 + 2 + · · · + 6 = 21, the center of mass is (6/21)v5, whose
distance from the origin is 2/7.

Problem 9. Let A = {0, 1, 2, 3, 5, 8, 13, 21, 34, 55}. Note that the nonzero numbers
in A are consecutive Fibonacci numbers. Define A+A+A = {a+ b+ c : a, b, c ∈ A}
(note that a, b, c are not required to be distinct). What is the smallest positive integer
that is not in A+ A+ A?

(A) 20 (B)♥ 33 (C) 54 (D) 88 (E) 166

Solution. Every positive integer can be written uniquely as a sum of distinct Fi-
bonacci numbers, provided no pair of consecutive numbers is used. (This can be
proved by complete induction.) We want to find the smallest positive integer that
cannot be written as the sum of three Fibonacci numbers: Take the sum of the four
smallest non-consecutive Fibonacci numbers, 1 + 3 + 8 + 21 = 33.

Problem 10. Instead of putting three tennis balls of radius 1 in a can, a mathemati-
cian’s pencil (i.e., a line segment) is inserted in place of the middle ball in such a way
that when it is tangent to both remaining balls (with both ends touching the can),
the top ball is at its usual height. How long is the pencil?

(A) 3 (B) 2
√
3 (C) 7/2 (D)♥ 4 (E) 4

√
3



Solution. As we see in the diagram, the key is congruent triangles.
Half the pencil is AC, and △ADC ∼= △CBO. The triangles are clearly
similar (e.g., ∠OCB +∠ACD = 90◦), but since OB and CD are both
radii, they are equal; thus, the triangles are congruent. Therefore,
AC = OC = 2, and the pencil has length 4.

OA B

CD

2 Medium Problems

Problem 11. How many pairs of rational numbers (a, b) are there for which

(a + bi)7 = a− bi ?

(Remember that i2 = −1.)

(A) 2 (B) 4 (C)♥ 5 (D) 8 (E) 9

Solution. Let z = a+ bi. We have |z|7 = |z| = |z|, so either z = 0 or |z| = 1. In the
latter case, we have z = 1/z, so z8 = 1. We ask how many solutions have rational

coordinates. The eighth roots of unity are ±1, ± 1√
2
± i

1√
2
, and ±i. Four of these

have rational coordinates. This makes five solutions, in total.

Problem 12. Suppose θ and φ are real numbers for which

sin(θ) + sin(φ) = 1/2 and cos(θ) + cos(φ) = −1/2 .

What is the value of sin(θ + φ)?

(A)♥ −1 (B) −1/2 (C) 0 (D)
√
3/2 (E) 1

Solution. Adding the equations, we get

sin(θ) + cos(θ) + sin(φ) + cos(φ) = 0 .

Multiplying by 1/
√
2 and recalling the addition formula sin(α+ β) = sin(α) cos(β) +

cos(α) sin(β), we have

sin
(

θ +
π

4

)

+ sin
(

φ+
π

4

)

= 0 .

It follows that either

θ + π/4 = −(φ+ π/4) , from which we obtain θ = −φ− π/2 , or

θ + π/4 = π + φ+ π/4 , from which we obtain θ = π + φ .

The latter choice contradicts the first of the given equations. Thus, θ + φ = −π/2,
and sin(θ + φ) = −1.
Alternative solution: Consider the unit complex numbers z = cos θ + i sin θ and w =
cosφ + i sin φ. Then we are given the fact that z + w = 1

2
(−1 + i) = 1√

2
ζ , where

ζ = cos(3π/4) + i sin(3π/4). Multiplying by 1/ζ = ζ rotates the picture an angle
−3π/4. In particular, if we let z′ = ζz and w′ = ζw, then z′ + w′ = 1/

√
2, and so it

follows that w′ = z′ and z′w′ = 1. From this we have zw = (ζz)(ζw) = ζ2 = −i. But
zw = cos(θ + φ) + i sin(θ + φ), so sin(θ + φ) = −1.



Problem 13. N congruent circles are packed tightly around a circle of radius 1 and
inside a concentric circle (which shrinks as N gets bigger). As N goes to infinity,
what fraction of the area of the outer ring is covered by the circles?

(A) π/6 (B) 3/4 (C)♥ π/4 (D) 3π/10 (E) 1

Solution. If we pack N circles of radius r around the unit
circle, each of them subtends an angle of 2α = 2π/N at the
origin. Then α = αN = π/N and sinαN = r/(1 + r). The total
area of these circles is Nπr2 and the fraction of the area of the
outer ring is

Nπr2

π
(

(1 + 2r)2 − 1
) =

Nr2

4(r + r2)
=

N

4

r

1 + r
=

N

4
sinαN .

We know that N sinαN = N sin
π

N
→ π as N → ∞. (Without calculus, we can

recognize this as follows: The circumference of an inscribed regular N -gon in the unit
circle is 2N sin(π/N), and this approaches 2π as N → ∞.) Therefore, our limiting
fraction is π/4.

Problem 14. For each number n > 1, let

sn =
1

2n
+

1

3n
+

1

4n
+ . . . .

What is the value of the infinite sum s2 + s3 + s4 + . . . ?

(A) 2 (B) π2/6 (C) eπ (D) infinite (E)♥ None of the above

Solution. We have

∞
∑

n=2

sn =
∞
∑

n=2

∞
∑

j=2

1

jn
=

∞
∑

j=2

∞
∑

n=2

1

jn

=

∞
∑

j=2

1

j2

1− 1

j

=

∞
∑

j=2

1

j(j − 1)
=

∞
∑

j=2

(

1

j − 1
− 1

j

)

= 1 .

Problem 15. How many subsets of {1, 2, 3, 4, . . . , 10} contain no pair of consecutive
integers?

(A) 105 (B)♥ 144 (C) 256 (D) 512 (E) None of the above

Solution. Let An be the number of subsets of {1, 2, . . . , n} without a pair of con-
secutive integers. We claim that An = Fn+2, where Fm denotes the mth Fibonacci
number. The asserted equality is obvious for n = 0 and n = 1. To prove it in general,
it is enough to demonstrate the recurrence relation An+1 = An + An−1.

Given a subset of {1, 2, . . . , n} with no consecutive integers, let us count how
many ways there are to extend it to a subset of {1, 2, . . . , n+ 1} with no consecutive



integers. (By an extension of a given set, we mean a subset of {1, 2, . . . , n+1} whose
intersection with {1, 2, . . . , , n} is the original set.) If our given subset S contains n,
then S itself is the only extension of {1, 2, . . . , n + 1}. If S does not contain n, then
there are two extensions, namely S and S ∪ {n+ 2}. So

An+1 = #{S containing n}+ 2#{S not containing n}
= (#{S containing n}+#{S not containing n}) + #{S not containing n}
= An + An−1,

as desired.
In the original problem, n = 10, and so the answer is F12 = 144.

Problem 16. The future UGA math department has offices numbered 1 through
2012. A madman breaks into the building and scrawls a 1 on the markerboard
outside each office. He then turns around and writes a 2 on the markerboard of each
even-numbered office. Turning around again, he puts a 3 on those whiteboards whose
office numbers are multiples of 3. He continues the same process for 2009 more steps.
Finally, he leaves the building and turns himself in to the police.

When the madman is gone, FBI consultant Charlie Eppes totals the numbers on
each whiteboard. On how many whiteboards does Charlie find an even sum?

(A) 44 (B) 1024 (C)♥ 1937 (D) 1998 (E) None of the above

Solution. We begin by counting the number of whiteboards for which the sum is
odd. After the dust has settled, the sum of the numbers on the nth whiteboard is
precisely the sum of the positive divisors of n, usually denoted σ(n). If we write the
prime factorization of n in the form

n = pe11 · · · pekk ,

then it is not hard to prove that

σ(n) =

k
∏

i=1

(1 + pi + p2i + · · ·+ peii ).

In order for the right-hand product to be odd, it is necessary and sufficient that each
of the factors be odd. Now the sum 1+pi+p2i + · · ·+peii is odd if and only if pi = 2 or
ei is even. It follows that σ(n) is odd precisely when we can write n = m2 or n = 2m2

for some integer m.
The number of squares up to 2012 is

[√
2012

]

= 44, and the number of integers

which are twice a square up to 2012 is
[√

1006
]

= 31. So the number of whiteboards
with an odd sum is 75, and the number with an even sum is 2012− 75 = 1937.

Problem 17. A regular hexagon is inscribed in the unit circle and weights 1, 2, 3,
4, 5, 6 are placed in some order at the vertices. What is the maximum distance from
the center of the circle that you can arrange the center of mass to be?



(A) 2/7 (B) 1/3 (C) 4
√
3/21 (D)♥ 2

√
13/21 (E)

√
57/21

Solution. Following the solution of problem #8, we want a permutation σ of

{1, 2, . . . , 6} so that S =
6
∑

j=1

σ(j)vj will have maximum length. (Then we multiply this

vector by 1/21 to obtain the center of mass.) Recalling that vj+3 = −vj , j = 1, 2, 3,
we rewrite this sum as av1 + bv2 + cv3, where a = σ(1) − σ(4), b = σ(2) − σ(5),
and c = σ(3)− σ(6). For the sum to be as large a vector as possible, we want three
consecutive vertices to have positive coefficients, and we may as well take these to
be v1, v2, and v3. Since the coefficients add to 21, the largest a + b + c can be is
(4 + 5 + 6)− (1 + 2 + 3) = 9. Now consider

S = a

[

1
0

]

+ b

[

1/2√
3/2

]

+ c

[

−1/2√
3/2

]

=
1

2

[

2a+ b− c√
3(b+ c)

]

.

Then

‖S‖2 = 1

4

(

(2a+ b− c)2 + 3(b+ c)2
)

= (a2 + b2 + c2) + (ab− ac+ bc)

= (a+ b+ c)2 − (ab+ bc + 3ac)

We assert that the way to maximize this quantity is to make a+b+c = 9 andminimize

ab + bc + 3ac. We tabulate the possibilities (using the a-c symmetry), remembering
that 1 ≤ a, b, c ≤ 5:

a b c b(a + c) + 3ac ‖S‖2
3 3 3 45 36
2 4 3 38 43
2 5 2 32 49
1 5 3 29 52

1 4 4 32 49
1 3 5 33 48

Corresponding to the optimal S is the center of mass at distance 2
√
13/21 ≈ 0.34

from the origin. (This shows, by the way, that considering the next case, where
a+ b+ c = 7, cannot lead to an optimal result.)

Problem 18. How many times do you expect to have to roll a fair die in order to
get each of the numbers one through six to appear?

(A) 6 (B) 10 (C) 12 (D)♥ 15 (E) None of the above

Solution. The heuristic is this: If the probability of a particular outcome of an
experiment is p, then in N repetitions, we would expect on average to have that
outcome appear pN times (at least when N is very large). So in the long run, the
average number of repetitions we must have for each successful outcome is N/Np =
1/p. For example, we expect, on average, to toss a coin twice in order to get “heads.”



It’s easy now to solve the problem. With the first roll you get the first number
(say 1). The probability of getting any one of numbers 2 through 6 in a roll is 5/6, so
we expect to have to roll 6/5 times to have this result. Having obtained one of these
(say 2), the probability of getting one a roll of 3 through 6 is 4/6, so we expect to have
to make 6/4 rolls of the die. Having obtained one of these (say 3), the probability
getting one of cards 4 through 6 is 3/6, and so we expect to make 6/3 rolls to do so.
To get one of the remaining values we expect to make 6/2 rolls, and, last, when we
lack one value, we expect to make 6 rolls in order to obtain it. So, in sum, we expect
to have to make

1 +
6

5
+

6

4
+

6

3
+

6

2
+ 6 = 6

(

1

6
+

1

5
+

1

4
+

1

3
+

1

2
+ 1

)

=
147

10
= 14.7

rolls. Thus, we expect to need 15 rolls of the die.

Problem 19. Let dn be the final digit before the decimal point of (2 +
√
5)n. For

example, d3 = 6, since (2 +
√
5)3 = 76.0131 . . . . Find d1 + d2 + d3 + · · ·+ d2012.

(A)♥ 9054 (B) 9060 (C) 10060 (D) 11066 (E) None of the above

Solution. Let an = [(2 +
√
5)n], and notice that dn is just the units digit of an. Set

bn = (2 +
√
5)n + (2−

√
5)n .

Then bn is an integer; moreover, the summand (2−
√
5)n is smaller than 1 in absolute

value and alternates in sign. It follows that an = bn − 1 if n is even, and an = bn if n
is odd. Also, the bn satisfy the recurrence

bn+1 = 4bn + bn−1.

(For example, this is easy to verify by induction.) Now starting with n = 0, the
sequence of units digits of the bn is 2, 4, 8, 6, 2, 4, 8, 6, . . . . So the sequence of units
digits of the an is (again starting with n = 0) 1, 4, 7, 6, 1, 4, 7, 6, . . . . Since 2012 is a
multiple of 4, the sum of the first 2012 values dn is

(1 + 4 + 7 + 6) · 2012
4

= 9054.

Problem 20. For how many positive integers n can we fit tightly packed congruent
circles of radius 1 in the ring between concentric circles of radii n and n + 2?

(A) 0 (B)♥ 1 (C) 2 (D) 5 (E) infinitely many

Solution. Obviously (as we know from the ciphering round), we can pack 6 unit
circles between concentric circles of radii 1 and 3. But this is the only solution! As in
the solution of problem #13, if we can pack N unit circles between concentric circles



of radii n and n+2 if and only if sin(π/N) = 1/(n+1). So we want to know for how
many values of θ = π/N we can have sin θ = 1/(n+1) for some n ∈ N. Equivalently,
by Euler’s formula, we are asking that e±iθ = cos θ± i sin θ be roots of the polynomial
zN = eiπ = −1. This means that e±iθ is what’s called an algebraic integer (a root of
a polynomial with integer coefficients and leading coefficient 1).

Now, here’s an important (but not totally obvious) fact: The set of algebraic inte-
gers forms a subring of C; that is, the set is closed under addition and multiplication.
Thus, if eiθ is an algebraic integer, then so is 2 sin θ = i(eiθ − e−iθ). But the only
rational numbers that are algebraic integers are integers themselves, so we must have
2 sin θ = 0, ±1, or ±2, so n + 1 = 1 or 2. These correspond to N = 2 and N = 6,
respectively. The case N = 2 cannot occur in our situation.

Problem 21. An integer n ≥ 0 is called automorphic if the decimal expansion of n2

ends in the same digits as n (in order). For example, 0 is automorphic, since 02 = 0,
and 76 is automorphic, since 762 = 5776. How many automorphic numbers are there
between 0 and 10, 000, inclusive?

(A) 4 (B) 6 (C) 8 (D)♥ 9 (E) 10

Solution. The positive integer n is a d-digit “automorph” precisely when n is a
solution of the congruence n2 ≡ n (mod 10d). Equivalently, n must be a solution of
the simultaneous congruences

n2 ≡ n (mod 5d) and n2 ≡ n (mod 2d).

The first of these congruences translates to the requirement that 5d divides n2 − n =
n(n−1). Since n and n−1 cannot both be multiples of 5, the divisibility holds exactly
when 5d divides n or 5d divides n − 1. Similarly, the second congruence displayed
above holds exactly when 2d divides n or 2d divides n−1. We conclude that a d-digit
number n is an automorph exactly when

n ≡ 0, 1 (mod 5d) and n ≡ 0, 1 (mod 2d).

These simultaneous congruences always have two solutions (mod 10d), 0 and 1; for
d = 1 we also obtain the two remaining single-digit automorphs, 5 and 6. If d > 1,
the only possibilities for automorphs are solutions to

n ≡ 0 (mod 5d) and n ≡ 1 (mod 2d)

or
n ≡ 1 (mod 5d) and n ≡ 0 (mod 2d).

For small d, the moduli are small enough that these systems can be solved by
inspection (cycling through solutions to the first congruence until one reaches a solu-
tion of the second). For d = 2, the solutions are n = 25 and n = 76, which give us
the two-digit automorphs. For d = 3, the solutions are n = 625 and n = 376, which
are the 3-digit automorphs. When d = 4, the solutions are n = 625 and n = 9376;
only the latter is a 4-digit automorph. So the set of automorphs up to 10000 is
{0, 1, 5, 6, 25, 76, 376, 625, 9376}. So there are 9 such numbers.



3 Hard Problems

Problem 22. For 1 ≤ m < n consider the equation

1 + 2 + · · ·+m = (m+ 1) + (m+ 2) + · · ·+ n .

There are two “small” solutions, namely (m,n) = (2, 3) and (m,n) = (14, 20). How
many solutions are there with 20 < n ≤ 2012?

(A) 0 (B) 1 (C)♥ 2 (D) 3 (E) 4

Solution. The given equation is equivalent to 2
m
∑

i=1

i =
n
∑

i=1

i, so we need to solve

m(m+ 1) = n(n+ 1)/2. Completing the square, we get

(

m+
1

2

)2 − 1

4
=

1

2

(

(

n+
1

2

)2 − 1

4

)

, and so

2(2m+ 1)2 = (2n + 1)2 + 1 .

That is, (2m+1, 2n+1) is an odd solution of Pell’s equation 2x2 = y2+1. Now, (x, y) is
a solution of Pell’s equation if and only if y/x is a continued fraction approximation
of

√
2. (See, for example, http://mathworld.wolfram.com/PellEquation.html.)

Since
√
2 = [1; 2, 2, 2, 2, . . . ], i.e.,

√
2 = 1 +

1

2 +
1

2 +
1

2 +
. . .

,

its convergents are

1,
3

2
,
7

5
,
17

12
,
41

29
,
99

70
,
239

169
,
577

408
,
1393

985
,
3363

2378
,
8119

5741
, . . . .

The convergents with odd numerators and denominators correspond to solutions
(m,n) as follows:

convergent (m,n)
1 (0, 0)
7/5 (2, 3)
41/29 (14, 20)
239/169 (84, 119)
1395/985 (492, 697)

Any remaining convergents correspond to n > 2012, and so there are two solutions
with 20 < n ≤ 2012.

http://mathworld.wolfram.com/PellEquation.html


Problem 23. Recall that [x] denotes the greatest integer ≤ x. Determine

[

1

12/3
+

1

22/3
+ · · ·+ 1

10002/3

]

.

(A) 22 (B) 26 (C) 28 (D) 499 (E)♥ None of the above

Solution. As we see from the picture,

1000
∑

n=1

n−2/3 = 1 +

1000
∑

n=2

n−2/3

< 1 +

∫ 1000

1

t−2/3 dt = 28 ,

and

1000
∑

n=1

n−2/3 >

∫ 1000

1

t−2/3 dt = 27 .

So the integer part is 27. (This is the integral test from the theory of infinite series.)

Alternative solution: Expanding out directly, it is easy to prove that for each n ≥ 1,

(

1 +
1

3n

)3

> 1 + 1/n , whereas

(

1− 1

3n

)3

> 1− 1/n.

After a bit of rearranging, we get

3((1 + 1/n)1/3 − 1) <
1

n
< 3(1− (1− 1/n)1/3),

so that, multiplying through by n1/3,

3((n+ 1)1/3 − n1/3) <
1

n2/3
< 3(n1/3 − (n− 1)1/3).

Now sum the right-hand inequality from n = 2 to n = 103, and add 1 = 1

12/3
; this

gives that the sum inside the floor function is smaller than 28. On the other hand,
summing the left-hand inequality from n = 1 to n = 103 gives that the sum inside
the floor function is > 3((1001)1/3 − 1) > 3(10− 1) = 27. So again, we find that the
integer part of the sum is 27.

Problem 24. The Euler function φ(n) is defined to be the number of integers between
1 and n (inclusive) which do not share any common factor > 1 with n. For example,
φ(10) = 4, since 1, 3, 7, and 9 is the full list of the numbers in {1, 2, 3, . . . , 10} without
a common factor with 10. For how many integers 1 ≤ n ≤ 2012 is φ(n) = n/3 ?



(A) 4 (B)♥ 30 (C) 60 (D) 335 (E) None of the above

Solution. By inclusion-exclusion, one can prove that for each positive integer n,

φ(n)

n
=

∏

p|n
(1− 1/p), (1)

where the right-hand product is over the primes dividing n. From this, we deduce
the following two useful facts:

• The ratio φ(n)/n depends only on the set of primes dividing n (and not the
powers to which they occur).

• The largest prime p dividing the denominator of φ(n)/n is the same as the
largest prime dividing n. (This is because p cannot divide a product of p′ − 1’s,
for smaller primes p′ dividing n.)

It follows that if φ(n)/n = 1/3, then 3 is the largest element of the set of primes S
dividing n. So the only possibilities for S are {2, 3} and S = {3}. Since φ(3)/3 = 1/2,
the only genuine possibility is S = {2, 3}.

So the integers n with φ(n)/n = 1/3 are exactly the integers of the form 2a3b,
with a, b ≥ 1. For each b, let us count the number of possible a so that 2a3b ≤ 2012.
Since 37 = 2187 > 2012, we need 1 ≤ b ≤ 6. If b = 1, we need 1 ≤ a ≤ 9. If b = 2, we
need 1 ≤ a ≤ 7. If b = 3, we need 1 ≤ a ≤ 6. If b = 4, we need 1 ≤ a ≤ 4. If b = 5,
we need 1 ≤ a ≤ 3. Finally, if b = 6, only a = 1 works.

So the total number of such n up to 2012 is

9 + 7 + 6 + 4 + 3 + 1 = 30.

Problem 25. Two circles, of radii 1 and 3, respectively, are inscribed in ∠POQ, as
shown. They are also tangent to AB, with P on OA and B on OQ. If OP = 3, what
is AB?

(A) 4 (B) 5 (C) 4
√
3 (D)♥ 6 (E) 6

√
3

Solution. We do not know any solution using just plane
geometry. In 1822 Dandelin gave the following proof that
slicing a cone with a plane (at the appropriate angles) gives
an ellipse. As pictured to the right, if we slice with a plane,



there are two inscribed spheres tangent to the plane (one
below, one above). The points of tangency (F1 and F2 in the
picture) are the foci of the ellipse. Recall that if a point X
is external to a circle, the two line segments containing X
tangent to the circle have equal length. So we have XF1 =
XP ′ and XF2 = XQ. But XP ′ + XQ = P ′Q is constant,
independent of which generator of the cone we’re on. So we
see that the ellipse is the locus of points X the sum of whose
distances from F1 and F2 is constant. But when X is in
position A or B, that distance is AB. Thus, AB = P ′Q.

Now we revert to plane geometry. Let C be the center
of the circle of radius 1 and D the center of the circle of
radius 3. Let E be the point on DQ so that CE is parallel

to P ′Q. Then, given that OP = OP ′ = 3, we have
1

3
=

2

x
,

so x = P ′Q = 6. This means, finally, that AB = 6! C

D
E

Authors. Written by Paul Pollack, Mo Hendon, and Ted Shifrin.
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Spirit of the Mathematical Olympiads. Problem 11 was inspired by an old AHSME
problem.
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