Real Analysis Qualifying Exam, Fall 2006 (2 hours)

Instructions: Work problems 1-3 and any 3 of the other 4 problems.

- #1. (15 points) Let B be a bounded subset of \mathbb{R}^n . Prove the following:
- a) If B is closed in \mathbb{R}^n and $f: B \to \mathbb{R}$ is a continuous function, then f is uniformly continuous.
- b) If B is not closed in \mathbb{R}^n , then there exists a continuous $f: B \to \mathbb{R}$ which is not uniformly continuous.
- #2. (10 points) Show that the sequence of functions $f_n = n^{-1}\chi_{(0,n)}$ converges uniformly to the 0-function on \mathbb{R} but does not converge to 0 in L^1 . Here n=1,2,... and $\chi_{(0,n)}$ denotes the characteristic function of $(0,n)\subset\mathbb{R}.$
- #3. (15 points) Let $\{f_k\}_{k=1}^{\infty}$ be a uniformly bounded sequence of functions on [0, 1] which converges pointwise to a function f. Answer the following with a brief explanation or a counterexample:
- a) If each f_k is Lebesgue integrable, does it follow that f is Lebesgue integrable?
- b) If each f_k is Riemann integrable, does it follow that f is Riemann integrable?
- #4. (20 points) Let m be Lebesgue measure on \mathbb{R}^d , and let $\{f_k\}_{k=1}^{\infty}$ be a sequence of measurable functions defined on a measurable set E with $m(E) < \infty$ such that $f_k \to f$ pointwise on E. Prove that for any $\epsilon > 0$ there exists a subset A of E such that $m(E-A) \leq \epsilon$ and $f_k \to f$ uniformly on A.
- #5. (20 points) Define the norm on $L^2(\mathbb{R})$ and give an argument for the completeness of $L^2(\mathbb{R})$.
- #6. (20 points)
- a) Show that for $f \in L^1(\mathbb{R}^n)$, if \hat{f} is defined on \mathbb{R}^n by $\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi ix\cdot\xi}dx$, then \hat{f} is a continuous
- b) Indicate how to obtain an example of $f \in L^1(\mathbb{R})$, such that \hat{f} is not a differentiable function. [No justification required.
- #7. (20 points) If m is Lebesgue measure on $\mathbb R$ and $f \in L^1(\mathbb R)$, let $F(x) = \int_{(-\infty,x]} f dm$, for $x \in \mathbb R$. Show that for almost every x, F'(x) exists and is equal to f(x). [Give the main points of a proof and indicate some of the details.]