There are five problems, each worth 20 points. Give complete justification for all assertions by either citing known theorems or giving arguments from first principles.

1. Let \(f : [0, 1] \to \mathbb{R} \) be continuous. Evaluate

\[
\lim_{k \to \infty} \int_0^1 kx^{k-1} f(x) \, dx
\]

2. Let \(\mathcal{B} \) denote the set of all Borel subsets of \(\mathbb{R} \). Let \(\mu : \mathcal{B} \to [0, \infty) \) be a set function with the property that if \(\{E_k\} \) is a countable collection of disjoint sets in \(\mathcal{B} \), then

\[
\mu \left(\bigcup_{k=1}^{\infty} E_k \right) = \sum_{k=1}^{\infty} \mu(E_k).
\]

(a) Prove that if \(\{F_k\} \) is a sequence of Borel sets for which \(F_k \supset F_{k+1} \) for all \(k \), then

\[
\lim_{k \to \infty} \mu(F_k) = \mu \left(\bigcap_{k=1}^{\infty} F_k \right)
\]

(b) Suppose that for every \(E \in \mathcal{B} \) with Lebesgue measure \(m(E) = 0 \), it follows that \(\mu(E) = 0 \). Prove that for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) so that if \(E \in \mathcal{B} \) with \(m(E) < \delta \), then \(\mu(E) < \varepsilon \).

3. Let \(\{f_k\} \) be any sequence of functions in \(L^2([0, 1]) \) satisfying \(\|f_k\|_2 \leq M \) for all \(k \in \mathbb{N} \). Prove that if \(f_k \to f \) almost everywhere, then

\[
\lim_{k \to \infty} \int_0^1 f_k(x) \, dx = \int_0^1 f(x) \, dx
\]

4. (a) Show that if \(f \in L^4([0, 1]) \), then \(f \in L^2([0, 1]) \) and \(\|f\|_2 \leq \|f\|_4 \).

(b) Does there exist a constant \(C \) so that for all \(f \in L^4([0, 1]) \), \(\|f\|_4 \leq C\|f\|_2 \)? Justify your answer.

(c) For a fixed function \(g \in L^4([0, 1]) \), let \(A \) denote the ratio \(\|g\|_4/\|g\|_2 \). Find a constant \(B \), depending only on \(A \), such that \(\|g\|_2 \leq B\|g\|_1 \).

5. Let \(\mathcal{H} \) be a Hilbert space and \(\{\varphi_k\}_{k=1}^{\infty} \) be a subset \(\mathcal{H} \) with the property that for every \(f \in \mathcal{H} \)

\[
\sum_{k=1}^{\infty} |\langle f, \varphi_k \rangle|^2 = \|f\|^2
\]

where \(\langle f, \varphi_k \rangle \) denotes the inner product of \(f \) and \(\varphi_k \) in \(\mathcal{H} \) and \(\|f\| \) denotes the norm of \(f \) on \(\mathcal{H} \).

(a) Show that for all \(f, g \) in \(\mathcal{H} \),

\[
\langle f, g \rangle = \sum_{k=1}^{\infty} \langle f, \varphi_k \rangle \langle g, \varphi_k \rangle
\]

[Hint: Consider \(\|f + g\|^2 \) and \(\|f + ig\|^2 \)]

(b) Show that for all \(f \) in \(\mathcal{H} \),

\[
\lim_{N \to \infty} \left\| f - \sum_{k=1}^{N} \langle f, \varphi_k \rangle \varphi_k \right\| = 0
\]

[Hint: Use the fact that \(\|h\| = \sup_{\|g\| \leq 1} |\langle h, g \rangle| \) for all \(h \) in \(\mathcal{H} \)]