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a b s t r a c t

The Reynolds transport theorem (RTT) from mathematics and engineering has a rich history of success in
mass transport dynamics and traditional thermodynamics. This paper introduces RTT as a complemen-
tary approach to traditional compartmental methods used in ecological modeling and network analysis.
A universal system equation for a generic flow quantity is developed into a generic open-system differ-
ential expression for conservation of energy. Nonadiabatic systems are defined and incorporated into
control volume (CV) and control surface (CS) perspectives of RTT where reductive assumptions in empir-
ical data are then formally introduced, reviewed, and appropriately implemented. Compartment models
are abstract, time-dependent systems of simultaneous differential equations describing storage and flow
of conservative quantities between interconnected entities (the compartments). As such, they represent
a set of flexible and somewhat informal, assumptions, definitions, algebraic manipulations, and graphi-
cal depictions subject to influence and selectively parsed expression by the modeler. In comparison, RTT
compartment models are more rigorous and formal integro-differential equations and graphics initiated
by the RTT universal system equation, forcing an ordered identification of simplifying assumptions, end-

ing with clearly identified depictions of the transfer and transport of conservative substances in physical
space and time. They are less abstract in the rigor of their equation development leaving less ambigu-
ity to modeler discretion. They achieve greater consistency with other RTT compartment style models
while possibly generating greater conformity with physical reality. Characteristics of the RTT approach
are compared with those of a traditional compartment model of energy flow in an intertidal oyster-reef

community.

. Introduction

Originating in the mathematical development of physiological
racer theory, linear differential equation systems with constant
oefficients are integral throughout the historical development of
cological network theory. In particular, the origin of compartment
odeling can be attributed to the need for descriptive and pictorial

epresentation of these mathematical models and the ecosystems
hey represented (e.g., Teorell, 1937; Sheppard and Householder,
951; Patten, 1964; Brylinsky, 1972). Compartment models (Matis
t al., 1979; O’Neill, 1979) and their associated mathematics are

idely used to represent ecological networks of stocks xi (i = 1, 2,. . .,

) and flows fij (i, j = 1, 2,. . ., n) of conservative substances (energy
r matter). Inter-compartmental flows are generated by bound-
ry inputs zj terminating in boundary outputs yi. Compartments as

∗ Corresponding author. Tel.: +1 706 542 4828; fax: +1 706 542 8806.
E-mail address: jschrams@uga.edu (J.R. Schramski).

304-3800/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.ecolmodel.2009.08.009
© 2009 Elsevier B.V. All rights reserved.

stocks, that is, transient storages of conserved substances, have lit-
tle inherent formalism beyond a mathematical description of their
rates of change by ordinary differential or difference equations.
Ultimately, the combined pictorial, descriptive, and mathematical
relations (e.g., assumptions, boundaries) remain abstractions heav-
ily influenced by the modeler. Yet clear and consistent equation
development, understanding, and interpretation are fundamental
to the advancement and interpretation of widely disparate ecolog-
ical network analyses (e.g., Hannon, 1979; Fath and Patten, 1999b;
Gattie et al., 2006a,b; Schramski et al., 2006, 2007). To increase
the rigor and consistency of compartment modeling, we intro-
duce a formalism cultivated in engineering to describe and quantify
mass transport and thermodynamic processes. The Reynolds trans-
port theorem (Reynolds, 1903), through its development of an

Eulerian control volume (CV) perspective, is a mature approach
that formalizes flow and storage regimes and their correspond-
ing equation development, explicitly ties pictorial representations
to the mathematical representations, and ultimately opens eco-
logical compartment modeling to the wider field of transport

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:jschrams@uga.edu
dx.doi.org/10.1016/j.ecolmodel.2009.08.009
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nalysis. Although the terms and concepts of compartment model
nd Reynolds transport theorem can include non-linear and variable-
oefficient methods, the present introduction restricts its focus to
inear, constant-coefficient models.

A short review of Reynolds transport theorem (RTT) specifically
rticulating the CV and control surface (CS) concept is followed by
evelopment of the RTT energy conservation equation. Where RTT’s
idely generated conservation equations serve in a first-principle

apacity to the study of transport dynamics, the condensed devel-
pment below is a hybrid of several textbook methods (e.g., White,
006; Munson et al., 2009), with most of the presentation ema-
ating from Janna’s (1993) derivation. The latter focuses on the
ssential physics of the flows and is particularly easy to under-
tand. While subsequently engaging in an ecosystem energetics
iscussion specifically facilitated using the RTT energy conserva-
ion equation, clarifying and simplifying assumptions for ecological
ompartmental analysis and subsequent ecological network anal-
sis (ENA) are identified. The entire RTT–CV methodology is then
llustrated by reformulating a compartment model of energy flow
nd storage of an intertidal oyster-reef community in South Car-
lina (Dame and Patten, 1981) from the CV perspective.

. Reynolds transport theorem control volume—review

Lagrangian and Eulerian perspectives in model development are
oth applicable to the study of mass or energy transfer. Lagrangian
ethodology, impractical for most reasonable ecological analy-

es and their attainable supporting data (although see Tollner and
azanci, 2007; Kazanci et al., 2008; Matamba et al., 2009 this issue,

or a recent development), addresses each individual particle’s rel-
vant characteristic as a function of time. Contrastingly, an Eulerian
r CV method is applicable to the study of entire regions (fields of
articles) of transactional flows. A CV analysis of a specific region
an be established through the RTT conversion relating the time
erivative of a material volume (often called the system in RTT anal-
sis but we refer to it as the environment) to the rate of change of
material quantity within a specified region known as the control
olume. Theoretically, a material volume is a closed system where
nergy but not mass crosses its boundary. An open-system CV (mass
nd energy can cross its boundary), judiciously chosen to represent
he respective region or network of study, is usually bounded by an
rtificial but mathematically meaningful CS separating the region
f study from the surrounding material volume environment. In
TT computations, the CS’s orientation and location, particularly

n transport analysis (conservation of mass), is critical and math-
matically relevant. Although this orientation characteristic may
ot be immediately useful for the flows associated with ecological
ompartment modeling or ecological network analysis (ENA), the

onsistency in the use and treatment of the CS with established con-
ervation mathematics in other disciplines will complement ENAs
larity, understanding, and future usefulness. Pictorially similar to
ompartmental analysis, a fixed CS is usually shown as a dashed
ine surrounding the CV as demonstrated in Fig. 1. The objective is

ig. 1. Fixed control volume showing its corresponding control surface of liquid
owing through a holding tank.
Fig. 2. The material volume, V, of an extensive property, S, at two sequential times,
t1 and t2. The control volume of interest, VB, is bounded by the control surface
represented by a dashed line.

to relate the region outside the CS (environment) to that within the
CV (system) and, by accounting for all of the mass or energy within
the CV or crossing the CS, generate the conservation equations. The
desired conversion derivation differs according to whether the con-
trol volume is fixed, deformable, or moving. For practicality within
ENA and for the ease of presentation, we only articulate a fixed
control volume derivation and application. The fixed CV procedure
starts with the following universal integral equation as a closed
environment of particles:

Senv =
∫ ∫ ∫

s� dV. (1)

Here, Senv is an extensive (mass dependent) conservative flow
quantity (e.g., mass, energy, momentum, etc.) which we desire to
monitor within a closed material volume environment, s is the cor-
responding intensive quantity (per unit mass–mass independent),
� is the concentration or density (mass per unit volume), and V is
the environmental volume of interest. In Fig. 2, letting t be time, let
the environmental volume at t1, V1, be represented by VA1 plus VB1,
and later the volume at t2, V2, by VB2 plus VC2. The CV is bounded
by the CS, represented by the dashed line. Change in the extensive
property during the time interval t1–t2 can be written as,

�Senv = (SB2 + SC2) − (SA1 + SB1). (2)

Rearranging the terms to organize the extensive property inside
and outside the prescribed CV, and dividing by the time interval,
�t = t2 − t1, the change in S per unit time is:

�S

�t

∣∣∣
env

= SB2 − SB1

�t
+ SC2 − SA1

�t
. (3)

The instantaneous rate of change is given in the limit:

lim
�t→0

�S

�t

∣∣∣
env

= lim
�t→0

SB2 − SB1

�t
+ lim

�t→0

SC2 − SA1

�t
, (4)

where

lim
�t→0

�S

�t

∣∣∣
env

= dS

dt

∣∣∣
env

. (5)

The first right-hand-side term of (4) can be rewritten as the partial

time rate of change of S within the control volume:

lim
�t→0

SB2 − SB1

�t
= ∂S

∂t

∣∣∣∣
CV

. (6)
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ig. 3. Flow through a differential area dA of a control surface surrounding a con-
rol volume. V is the velocity of some entity through the differential area dA and is
ogether comprised of its tangential Vt and normal Vn velocity components.

he second right-hand-side term in (4) represents the net rate of
ow of S out of the control volume:

lim
t→0

SC2 − SA1

�t
= lim

�t→0

ıS

�t
, (7)

where ı signifies the net rate out, a.k.a., out minus in). To obtain the
pecific limiting expression, this term requires additional manipu-
ation using the Gauss–Green divergence theorem which converts
he net flow out of the control volume to the specific flow of s
long the portion of the perpendicular velocity vector Vn to the
ifferential area element dA on the CS bounding the CV.

Consider Fig. 3 showing a differential area dA on the CS. The
angential velocity Vt carries no matter out of the CV by crossing the
S. All matter leaving dA can be assumed in the normal direction
epresented by the normal component of the velocity Vn. During
t, the mass crossing dA is then:

m = � dV (8)

here, the differential volume is the three dimensional product of
he cross-sectional area and height:

V = (Vn�t) dA. (9)

ssuming the amount of S moving through the area dA is

S = s dm, (10)

ubstitute (8) and (9) into (10) and divide through by �t to obtain:

ıS

�t
= s�Vn dA. (11)

n the limit as �t approaches zero:

lim
t→0

ıS

�t
=

∫ ∫
CS

s�Vn dA. (12)

he main premise with the surface integral of (12) is that the CS and
ts location and orientation are relevant and critical to the mathe-

atics describing the conservation equations in transport analysis.
lthough the choice of CS location and orientation remains with

he modeler, the variation in its location is often used to a mod-
ler’s advantage. Substituting (5), (6), and (12) into (4) generates
he general RTT conservation equation for an open control volume
ystem:

dS

dt

∣∣∣
env

= ∂S

∂t

∣∣∣∣
CV

+
∫ ∫

CS

s�Vn dA (13)

In practical terms Eq. (13) states:

|instantaneous time rate of change of S in an environment of

particles| = |instantaneous time rate of accumulation of nonumber
S within the control volume| + |amount of S leaving the

control volume minus the amount of S entering|
he difference between the time rate of change of S in the environ-
ent and the time rate of change of S in the CV is the net amount of
elling 220 (2009) 3225–3232 3227

S leaving the CV. The RTT–CV equation framework, extending and
augmenting ecological compartmental analysis, allows for a con-
sistent and clarifying elaboration of transport energetics, as shown
next.

3. Reynolds transport theorem control
volume—conservation of energy

Assumptions necessary to express the conservation equation for
energy in a form compatible with ecological field data will serve
to contrast the complexity of ecosystem energetics and existing
modeling capabilities. Energy conservation in an adiabatic, closed
system is given by:

dW = (E2 − E1) = dE. (14)

The net work performed on the system, dW, is defined as the change
in energy (E2 − E1) of the system, where E1 and E2 indicate initial
and final states. Work, W, quantifies the interaction of a system with
its surroundings (in effect, work crossing the system boundary) and
includes, for example: shaft, electric and magnetic, viscous shear, or
flow work. Numerous energy forms can constitute the total energy,
E, of a macroscopic system including, for example: internal, kinetic,
gravitational potential, electrostatic, chemical, nuclear, magnetic,
or strain energy.

For a nonadiabatic, diathermic, closed system, energy conserva-
tion is defined as,

Q ≡ (E2 − E1) − W, (15)

where the difference between the change of energy of the system
and the work done on the system is the heat of interaction of the
process (Q and W are positive for heat added to or work performed
on the system). Rearranging (15), and writing in a differential form:

dE = dQ + dW, (16)

where dQ reflects the net energy transfer driven by the temperature
difference between two systems. Actions commonly represented
by dQ are radiation, convection, and conduction. The energy in a
system (control volume, CV) changes by an amount equal to that
which crosses the system boundary (control surface, CS) where
energy can cross a boundary in the form of heat transfer (Q) or
work (W) for the closed system of (16). To account for the mass
flow of an open system, using (13) let S = E and s = E/m = e where the
RTT open-system conservation of energy equation becomes,

dE

dt

∣∣∣
env

= ∂E

∂t

∣∣∣∣
CV

+
∫ ∫

CS

e�Vn dA (17)

Considering (16), for the control volume system coincident with
the environment at an instant of time,

dE

dt
=

[
dQ

dt
+ dW

dt

]
env

=
[

dQ

dt
+ dW

dt

]
CV

, (18)

Substituting (18) into (17) yields,

[
dQ

dt
+ dW

dt

]
CV

= ∂E

∂t

∣∣∣∣
CV

+
∫ ∫

CS

e�Vn dA, (19)

where the heat transfer rate to the CV, dQ/dt, plus the rate of work
performed on the CV, dW/dt, equals (for a non-steady-state system)
the energy accumulation rate in the CV, ∂E/∂t|CV, plus the energy
associated with mass entering or leaving the system across the CS,∫∫
CS
e�Vn dA (e.g., kinetic, potential, chemical, nuclear, etc.). Eq.

(19) represents the first law of thermodynamics (law of conserva-
tion) for an open system. Thermodynamic analysis of a given open
system involves independently evaluating the rates of heat trans-
fer and work done on the system, the rate of energy accumulation,
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nd changes in specific forms of energy associated with mass flows
cross the system’s boundaries.

. Conservation of energy—ecosystem energetics

Representing an ecosystem with a practical formulation of
19) is the next logical, but difficult, step. Ecosystem types vary
idely and, correspondingly, are continuous tradeoffs between the

ates of heat transfer dQ/dt, work dW/dt, energy stored ∂E/∂t|CV,
nd the energy associated with mass flow across CS boundaries,∫

CS
e�Vn dA. For example, consider solar radiation is converted

o gravitational potential energy through the heating of water,
ubsequent evaporation, and ultimate precipitation. Atmospheric
inds are the kinetic energy produced from the solar heating of the

iosphere. Primary producers use solar radiation to convert raw
aterials of lower chemical energy (H2O, CO2) to higher energy

ompounds (e.g., carbohydrates). Secondary consumers use pho-
osynthetic products to increase their biomass and produce useful
ork. Additional complexities exist in the widely variable ineffi-

iencies in these processes lost to the greater environment as heat
ventually radiated back to space. Although detailed energy bal-
nces of specific ecosystems or their components exist, for example,
reen leaves (Aber and Melillo, 2001) and bodies of water (the
sychometric chart in all elementary thermodynamics texts), as of
et, data acquisition for network analyses of energy flow has been
ragmatically limited to food-web style contact graphs (Odum,
956, 1957; Tilly, 1968; Williams and Crouthamel, 1972; Dame and
atten, 1981; Martinez, 1995; Pimm, 2002).

The energetics of ecological network models are very limited
r simplified. Most elements of heat transfer, work, and internal
nergy change are loosely combined into respiration. Except for pri-
ary producers, which convert electromagnetic energy to chemical

nergy, all flows crossing boundaries between other compartments
re in the form of chemical energy (e.g., carbohydrates). Output
ows, leaving the system boundary (no consumer available within
he defined system), include energies associated with or grouped
nto component metabolism (basal and non-basal respiration), net
omponent growth (e.g., Hannon, 1973), and exported biomass
e.g., mortality, food ingested but not assimilated, etc.). Variations
xist on the groupings of these system-level output energy flows
e.g., Odum, 1957; Hannon, 1979, 1985; Dame and Patten, 1981),
et these groupings reveal little about the work, heat transfer, or
nergy of mass transfer associated with ecological processes.

. Conservation of energy—ecological network analysis

The RTT–CV formulation of energy conservation is uniquely
ffective and accurate acknowledging the different types, and
herefore to some extent the qualities, of energy potential, thus
mproving model presentation and communication. Compartment

odeling in the general sense has not accomplished this, or at
est, achieves this type of insight with difficulty (see later, oyster
odel example). However, reducing RTT’s Eq. (19) with appropriate

ssumptions, into a typical ENA conservation equation capable of
eceiving the usual field data, compliments compartment modeling
y providing insight into the gap between the expansive under-
tanding of ecosystem energetics and the current methodologies
sed to model this activity. The rate of work dW/dt performed by or
n an organism physically moving materials, or an abiotic compart-

ent moving vertically closer to earth, is usually combined into the

ate of heat transfer term dQ/dt representing incoming or outgoing
nergy not specifically associated with mass flow across a boundary
loosely qualified as respiration or solar radiation). Subsequently
or compartment-modeling analysis, Eq. (19) consolidates to the
elling 220 (2009) 3225–3232

following form for one-dimensional flow,

dQ

dt

∣∣∣
CV

= ∂E

∂t

∣∣∣∣
CV

+
∑
out
CS

(ṁe)out −
∑
in
CS

(ṁe)in (20)

Here, intensive or mass-specific energy, e (e.g., kJ/kg), and asso-
ciated mass flow, ṁ (e.g., kg/s), are combined in the concept of
biomass, representing stored chemical energy. At steady-state,
with no net accumulation of energy in the CV, ∂E/∂t|CV = 0, Eq. (20)
is often simplified to,

dQ

dt

∣∣∣
CV

=
∑
out
CS

(ṁe)out −
∑
in
CS

(ṁe)in (21)

where the rate of heat transfer from and to the system, ±dQ/dt|CV,
could be confused with the missing rate of accumulation term,
∂E/∂t|CV. If the system is assumed adiabatic, dQ/dt|CV, Eq. (20)
becomes,

∂E

∂t

∣∣∣∣
CV

=
∑
in
CS

(ṁe)in −
∑
out
CS

(ṁe)out, (22)

which is subtly but distinctly different than Eq. (21). Considering
Eqs. (20)–(22), various forms of energy on the left-hand sides—e.g.,
inputs, +dQ/dt, as radiation, outputs, −dQ/dt, as respiration, and
storage accumulations, ±∂E/∂t|CV, as biomass are often written
interchangeably with the incoming and outgoing mass flow terms
on the right-hand sides. To begin clarifying such issues of energy
commensurability that go untreated in compartment modeling,
each of the n scalar equations of an n-compartment energy model
can be written as a corresponding conservation equation for an
n-CV model using Eq. (19) as the universal starting point. As
this discussion illustrates, first principles, definitions, assumptions,
and algebraic manipulations are clearly different aspects of model
development where RTT can compliment compartment modeling
and help introduce an orderly progression of steps into the model-
ing process and final model representation.

Note, for comparison, that a linear, scalar, energy-balance for-
mulation for one of i = 1, . . ., n compartments, plus environment,
i = 0, of a corresponding compartmental system, E = (Ei)n×1, is often
written by inspection and tradition as:

dEi

dt
= inflow − outflow = [ci0E0 + ci1E1 + ci2E2 + . . .

+cin
ii Ei + . . . + cinEn] − [c0iEi + c1iEi + c2iEi + . . .

+cout
ii Ei + . . . + cniEi]. (23)

Here, each coefficient, cij (i, j = 0, . . ., n), denotes the fraction of
substance storage Ej in compartment j that flows via a direct link,
fij = cijEj, to the stock Ei in compartment i. The first bracketed terms
represent the total substance flow into compartment i (incoming
throughflow, T in

i
) and those on the right denote total flows out (out-

going throughflow, Tout
i

). The terms ci0E0 and c0iEi denote boundary
inputs, zi, and outputs, yi, respectively, to and from the system. The
system boundary is in effect delimited by these particular trans-
fers, and may be real or virtual; it corresponds to the CS of the RTT
formulation. The latter is concrete, however, and occurs in phys-

ical space-time, while the former is abstract in the context of the
space-free compartmental formulation. The cin

ii
Ei and cout

ii
Ei terms in

(23) signify the compartment’s contributions and deductions to and
from itself. The self contributions are positive, zero, or negative in
accordance with the three possibilities cin

ii
Ei > cout

ii
Ei, cin

ii
Ei = cout

ii
Ei,
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Fig. 4. Energy flows (kJ m−2 d−1) and standing crops (kJ m−2) in an intertidal oyster
reef (Dame and Patten, 1981). Figure includes the system control volume (CV) and
the system control surface (CS) and an example (Predators) of a typical sub-group’s
CV and CS. Defining the appropriate CV’s and CS’s is required per the Reynolds trans-
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ort theorem. Figure shows the inter-CV flows fij , input boundary flows zi , and output
oundary flows yj . No self-loops, fii = 0, exist in this model. For energy modeling, often
he environment and CS boundaries are considered coincident at an instant of time
o aid algebra.

nd cin
ii

Ei < cout
ii

Ei. These net self-flows accordingly reflect (pos-
tively, neutrally, or negatively) the compartment’s contribution
o the rate of change of its own accumulation or standing stock,
Ei/dt as initiated by Eq. (23). The ambiguity of these self-flows as
ows or quasi-storages in their relation to the other flows, the sys-
em boundary, and the resultant, dEi/dt, is one of the conceptual
ifficulties with compartment models that the RTT mathematical
ormulation resolves, or at least avoids, as later discussed.

. Conservation of energy—energy flow in an intertidal
yster reef

Dame and Patten’s (1981) steady-state compartment model of
n intertidal oyster-reef community in coastal South Carolina, USA
s depicted in Fig. 4. Feeding type and size determine the group-
ng CV’s of this system, which correspond to the compartments as
riginally given. Filter Feeders, Deposit Feeders, and Predators are
acroscopic organisms, while Meiofauna and Microbiota are pro-

ressively smaller living forms. A single input of phytoplankton and
uspended detrital particles, acquired through filter feeding, serves
s the trophic base of the community driving the system. Boundary
utput processes include resuspension, mortality, and respiration.
he remaining inter-compartmental, inter-CV flows are due either
o feeding, or egestion to the deposited detrital compartment.

Control surfaces circumscribe the CVs of each compartment and
he system as a whole. The scalar version of the universal scale-free
ormula (1) for the ith control volume, CVi, is:

Senv =
∫ ∫ ∫

s� dV ]
i

. (1a)

his expression corresponds to the general scalar equation for com-
artments, Eq. (23), in the compartment-modeling paradigm. The
ubsequently derived RTT conservation Eq. (17a) generates the law
f conservation open system energy balance (19a) for each modeled
ompartment CVi, i = 1, . . ., 6 and the total system CVi, i = 7:

dE
∣∣ = ∂E

∣∣∣ +
∫ ∫

e�V dA

]
, (17a)
dt
∣
env ∂t ∣

CV CS
n

i[
dQ

dt
+ dW

dt

]
CV

= ∂E

∂t

∣∣∣∣
CV

+
∫ ∫

CS

e�Vn dA

]
i

(19a)
elling 220 (2009) 3225–3232 3229

Assuming either that no net work, dWi/dt, is performed on each
CVi or that an unknown amount of work is reasonably represented
within the net heat flow rate, dQi/dt, and the flows associated with
the surface integral term on the right-hand-side are spatially one-
dimensional (represented as difference of simple summations), an
open system energy-balance expression is written:⎡
⎢⎢⎢⎢⎣

dQ

dt

∣∣∣
CV

= ∂E

∂t

∣∣∣∣
CV

+
∑
out
CS

(ṁe)out −
∑
in
CS

(ṁe)in

⎤
⎥⎥⎥⎥⎦

i

(20a)

or at steady-state with ∂E/∂t|CV = 0,⎡
⎢⎢⎢⎢⎣

dQ

dt

∣∣∣
CV

=
∑
out
CS

(ṁe)out −
∑
in
CS

(ṁe)in

⎤
⎥⎥⎥⎥⎦

i

(21a)

Accounting for the energy flows across each control volume’s CSi,
the energy balance for the Filter Feeders (CV1) is written,

−q01 = (ṁe01 + ṁe61 + ṁe21)out − (ṁe01)in. (21b)

Here, e represents intensive energy flow per unit mass (kJ/kg) and
q, where for ease of presentation q = dQ/dt, is mass-free energy flow
(e.g., respiratory heat, in kJ/d). Mass flows, ṁ, carry units of kg/d,
such that the extensive energy flows, ṁeij , are expressed in kJ/d.
The entire equation is divided by m2 to accommodate the oys-
ter reef empirical data. Each term (in kJ m−2 d−1) then represents
a power density, i.e., the rate of energy flow per unit of oyster-
reef area. The left-hand side, q01 (61.69 kJ m−2 d−1), is respiration
waste heat. The right-hand-side outbound, ṁe01, ṁe61, and ṁe21
(43.68, 2.13, and 66.07 kJ m−2 d−1, respectively) and inbound, ṁe10
(173.51 kJ m−2 d−1) flows are due to predation, egestion, and feed-
ing which are mass flow energy transfers. Assuming similar CVi’s
and CSi’s for the rest of the system, including the total system (21h),
the energy balances are,

0 = (ṁe02 + ṁe32 + ṁe42 + ṁe52)out

−(ṁe24 + ṁe25 + ṁe26 + ṁe21)in, (21c)

−q03 = (ṁe43 + ṁe53)out − (ṁe32)in, (21d)

−q04 = (ṁe24 + ṁe54)out − (ṁe24 + ṁe34)in, (21e)

−q05 = (ṁe25 + ṁe65)out − (ṁe52 + ṁe54 + ṁe53)in, (21f)

−q06 = (ṁe06 + ṁe26)out − (ṁe65 + ṁe61)in, (21g)

−q01 − q03 − q04 − q05 − q06 = (ṁe01 + ṁe02 + ṁe06)out

−(ṁe10)in, (21h)

where the flow out of Deposited Detritus (2) across the system CS,
ṁe02, is due to resuspension, not respiration (q02).

Eqs. (21b)–(21h) can be further simplified notationally, for
example employing the input–interflow–output notations intro-
duced in the text following Eq. (23). Then, Eqs. (20b)–(20h) become:

y1 + f61 + f21 = z1, (21i)

y2 + f32 + f42 + f52 = f24 + f25 + f26 + f21, (21j)
y3 + f43 + f53 = f32, (21k)

y4 + f24 + f54 = f24 + f34, (21m)

y5 + f25 + f65 = f52 + f54 + f53, (21p)
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6 + f26 = f65 + f61, (21q)

1 + y2 + y3 + y4 + y5 + y6 = z1 (21r)

ith this, compartmental and RTT-based modeling become joined,
otationally as well as conceptually.

. Discussion

Ecology can be defined as the biological science of environ-
ent, but in its history it has often lost sight of what is system and
hat is environment given that it is an amorphous field of niches,
opulations, communities, etc. with corresponding amorphous
oundaries. The classical homogeneous differential equations of
opulation ecology, devoid as they are of explicit nonhomoge-
eous connection to environment, are a prime example of this

apse. Compartment models reconnect ecology to its object of inter-
st because they always describe open, dissipative systems that
lways require environmental inputs and outputs to function. The
oundaries of compartmental models are explicit or implicit, but
lways present, and their further rendering as control surfaces in
he Reynolds transport sense tends to make them more concrete
nd physical than is typically demonstrated in the time-dependant
ompartmental modeling. Conceptually, compartments and con-
rol volumes are equivalent entities, both fully under the control of
he modeler to define. The rigidity of form provided by the Reynolds
ransport CV, however, helps establish a more rigorous implemen-
ation of the compartment concept—a connection helpful for the
roader ENA because inter-CV flows and CV storages maintain
onsistent definitions at model conception and subsequent ana-
ytical interpretations. The inside/outside distinction is maintained
n the RTT approach and, because engineers deal with more con-
rete systems than systems ecologists, CV’s are inherently more
hysical (the triple-integral defined physical volume, for exam-
le) than their abstract compartmental counterparts designed to
e flexible with large, complex, multifaceted, and diffuse ecological
ystems.

Both the compartmental and RTT approaches are internally con-
istent. In the latter, consistency starts with the universal system
q. (1) which mathematically represents each CV at all scales of
ierarchical organization relevant to the system in question. In
ompartment models, consistency is reflected in the conservation
rinciples for energy and matter (Patten et al., 1997), the (2nd-law-
ased) dissipation principle for energy (Straskraba et al., 1999), and
penness which follows from the latter (Jørgensen et al., 1999).
ass and energy balance equations reflect this triad of bedrock

olid physical principles. The universal system Eq. (1) of RTT is
qually valid for each hierarchal sub-grouping, as demonstrated
n Eqs. (21b)–(21g), and also the entire system as shown in Eq.
21h). The equation is fundamentally more capable, temporally
nd spatially, than space-free compartment models, of incorpo-
ating further inclusions, elaborations, and improvements at all
ierarchical levels. In applications to energetics, the simultane-
usly simple but comprehensive treatment of system-wide energy
n its diverse forms made possible by RTT provides a universal start-
ng point for comparative analyses that enhances compartmental

odeling. Fluid dynamics’ Navier–Stokes equations, chemistry’s
xidation–reduction balances, and physics’ conservation of electric
harge are all examples of conservation-based sciences with sim-
lar, and somewhat elegant, mathematical foundations. Providing
physically consistent mathematical extension of compartmental

nalysis joins this field to the greater disciplines of conservation sci-
nce, opening it and its extensions to ecological network analysis
e.g., Christian and Thomas, 2000, 2003; Fath and Patten, 1999a,b;
attie et al., 2006a,b; Schramski et al., 2006, 2007; and others) to
ider participation.
elling 220 (2009) 3225–3232

Subsequent assumptions, definitions, algebraic development,
and descriptions starting from Eq. (1) establish a compartment-
modeling consistency. Disparate equation development methods
are normal in compartment modeling where a comprehensive
list of simplifying assumptions is rarely articulated. Definitions,
their substitutions, and algebraic manipulations are often com-
bined with minimal descriptions. The lack of consistency serves
as minor time-consuming nuisances to those familiar with the field
and as genuine impedances to those potential representatives from
disparate fields of conservation science needed to embrace and fur-
ther augment compartmental modeling. The universal system Eq.
(1) forces a reasonably ordered presentation of assumptions and
definitions to develop a suitable working equation [e.g., Eq. (21)]
relevant to the question or data available. Further implementation
of (21) demonstrates the RTT consistency with the compartmen-
tal approach. Most notably, assumptions (spatial and temporal
interpretations, simplifications, combinations, etc.) and definitions
(substitutions) generally precede, as they should, final algebraic
manipulations.

The RTT–CV model is sufficiently definitive to begin laying a
formal foundation to previously abstract concepts. Consider that
absent a formal definition, a compartment self-flow out and back
to itself over one path length has been articulated as both a flow
and a quasi-storage related entity (Odum, 1957; Fath and Patten,
1999a; Patten, 1981, 1982). In the vast majority of models in the
literature to date, the observed field-acquired data corresponding
to the self-flow terms have been zero or inconsequential and there-
fore, assumed zero. However, although rare, empirically observed
self-loops do exist in the literature (e.g., Odum, 1957; Hannon,
1979). Absent a formal framework in compartmental analysis, the
self-flow idea is difficult to discuss and defend from at least the
two perspectives of ecological field interpretations (data collection)
and the subsequent model development (mathematical represen-
tations). Ambiguity has persisted.

Formally derived from the RTT integral calculus operations
(Gauss–Green divergence theorem), however, a mass-specific flow
is only recognized in the conservation equation as a flow if it crosses
the CS. If it does cross the CS (and then eventually returns back
across the CS into the CV), a self-flow becomes one flow of many
on the right-hand-side of the conservation equation contributing
to a CV storage’s accumulation. As such, a self-flow included in this
manner does not inherit, over the other flows, any special mathe-
matical recognition or, in particular, quasi-storage status. If a flow
does not cross the defined CS of the control volume, then by defi-
nition, the flow does not exist in the right-hand-side terms of the
conservation equation. When a flow remains within the predeter-
mined CV, the RTT conservation equation has no capacity to include
or review the flow’s essence or activity and by this model defini-
tion is not a flow. Admittedly, although the analytical description is
definitive, the ecological significance of a self-flow, particularly as it
pertains to data collection from the field, still remains unclear and
requires more work in both compartment and ecological network
analysis. However, the current RTT initiated equation development
allows us to articulate this discussion. The ecological significance
of a self-flow can be temporarily sidestepped since the self-flow
algebraic terms (with zero values generally substituted later) can
be clearly defined and remain with no disruption to subsequent
equation development.

Eq. (13)’s explicit representation of the control surface promotes
wider consideration and integration of the pictorial and mathemat-
ical portions of the compartmental modeling process. Although not

immediately useful in ecological compartment analysis, the CS as
a line of demarcation can witness and mathematically articulate
a variety of transitions and transformations. In fluid dynamics the
CS is capable of serving as a highly accurate monitoring-modeling
point wherein fluids cross at various directions and velocities. The



al Mod

g
i
fl
a
t
I
a
fl
t
g
n
E
b
i
b
p
i
e
p
p

(
s
p
o
p
c
t
m
n
t
b
t
r
S
t
(
t
i
o
e
∂
e
i

p
t

T
S
a
m

J.R. Schramski et al. / Ecologic

eometric location of the CS, the geometric direction, and the phys-
cal quality (velocity, pressure, height, etc.) of the respective fluid
ows as they cross are usually essential concerns where flows are
ssessed and quantified through various forms of Eq. (13) to assure
hat all mass or energy is accounted for in the conservation sense.
n compartment modeling, the definition or description of a flow
cross the respective CS can also vary considerably. For example,
ows represent nitrification as ammonium in one CV transforming
o a nitrate in a subsequent CV or ingestion as particulate nitro-
en in a phytoplankton CV are consumed to become particulate
itrogen in a heterotroph CV (Christian and Thomas, 2000, 2003).
nergy stocks in compartment models are typically represented
y the energy content associated with a particular biomass group-

ng. The energy flows are then the respective biomass exchanges of
iotic and abiotic CVs through ingestion, egestion, mortality, res-
iration, etc. or flow not associated with mass transport such as

nsolation. Whether abstract or explicit flows, the RTT–CV math-
matical model tied to its pictorial representation is capable of
roviding judiciously vague to very explicit spatial definition to the
hysical occurrence modeled.

The abbreviated development of the energy conservation Eqs.
19)–(22) begins to identify the abundance of assumptions neces-
ary to arrive at a suitable energy-analysis equation for ecological
urposes. Energy within ecosystems has a variety of manifestations
nly coarsely represented by the quantity of terms in a com-
rehensive energy conservation equation. Furthermore, energy
ontinuously transforms itself through a variety of forms and
hereby cycles (Patten, 1985) through a combinatorial vast array of

icroscopic fluxes as it degrades ultimately to the predictable diur-
ally cycled heat radiating back to space. These assumptions and
he corresponding lumping of terms are rarely discussed in depth
eyond the pertinent energy-flow description leading directly to
he simplified Eqs. (21i)–(21r). For example, the output flow respi-
ation term ri, in Hannon’s (1973) summary of Odum’s (1957) Silver
prings model combines three energy terms: (1) heat flow out due
o respiration, (2) net component growth of energy content, and
3) energy content of exported biomass. These three terms involve
hree distinctly different energy manifestations (and energy qual-
ties) in the conservation equation, respectively: (1) the heat flow
ut due to respiration is dQ/dt, (2) the net component growth of
nergy content represents the non-steady-state accumulation term
E/∂t|CV, and (3) the energy content of the exported biomass is an
nergy flow associated with mass flow which is one of the terms

n the mass-specific energy summation

∑
out
CS

(ṁe)out.For the most

art, this differentiation of the forms of energy adds nothing to
he current compartment-modeling methodology. However, as the

able 1
ummary of a Reynolds transport theorem control volume model’s complimentary
spects to ecological network analysis’s compartmental modeling pertaining to the
odeling of energy storage and flow in ecological networks.

Compartmental model Reynolds transport theorem control
volume model

Order of differential equation
development less formal and
generally more modeler
dependent

Order of differential equation
development more formal and
generally more RTT process dependent
(first principles, assumptions,
definitions, algebra, interpretation)

Time dependent equations where
mathematical model is loosely
tied to pictorial model

Time and space dependent equations
where mathematical model can be
explicitly tied to pictorial model

Energy types are identified by the
modeler

Energy types are mathematically
explicit through established RTT
development methodology
elling 220 (2009) 3225–3232 3231

quality of energy or total energy investment garners heightened
awareness in ecological studies (Odum, 1996; Brown and Ulgiati,
2001; Sciubba, 2004, 2005; Jørgensen, 2005), identifying appropri-
ate simplifying assumptions is becoming necessary to elicit and
foster a wider understanding of ecosystem energetics and cor-
responding network analyses. As of yet, these assumptions have
not been consistently articulated with regard to compartmental
modeling development. The Reynolds transport equations (13) and
(17) provide a foundational framework to adequately describe all
assumptions leading to the final conservation equations. These
assumptions, like all assumptions should, can now be used and then
subsequently evaluated for their impact on the final results. They
can also be isolated and independently explored in later studies.

8. Conclusions

Table 1 consolidates RTT’s substantive and therefore potential
complimentary improvements to compartmental analysis. Where
compartment modeling, although abstract, can ultimately be suc-
cessful at accounting for all conserved quantities, RTT’s formal
CV developmental process provides structure and order to the
introduction of first principles, assumptions, definitions, algebraic
manipulations, and graphical presentations. This ordered progres-
sion, among other attributes, uniquely illuminates different types
(and therefore different qualities) of energy transfers. In short,
existing compartment analysis of ecosystems is a successful but
implicit process of equation and graphical construction with the
order and content of development heavily influenced by the mod-
eler. The RTT–CV is a consistent model development methodology
that informs compartmental analysis and ultimately ecological net-
work analysis, helps to communicate across disparate disciplines,
and most importantly, will help in the classroom as this material
makes its transition from journals to textbooks where uniform and
consistent methods are essential.
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