1. (a) Quote Doob's martingale convergence theorem.
 (b) Define a sequence \(\{X_n, n \geq 0\} \) of random variables as follows: \(X_0 = 0 \); if, for \(n \geq 1 \), \(X_{n-1} = 0 \), define \(X_n = 1, -1, 0 \) with probabilities \(\frac{1}{2n}, \frac{1}{2n}, 1 - \frac{1}{n} \), respectively; if \(X_{n-1} \neq 0 \), define \(X_n = nX_{n-1}, 0 \) with probabilities \(\frac{1}{n}, 1 - \frac{1}{n} \) respectively. Show that (i) \(\{X_n\} \) is a martingale, (ii) \(X_n \rightarrow 0 \) in probability, and (iii) \(X_n \) does not converge to 0 almost surely.

2. (a) Quote (without proof) Kolmogorov's three series theorem.
 (b) If \(\{X_n\} \) is a sequence of independent random variables with zero mean and satisfying
 \[
 \sum_{n=1}^{\infty} E\left[|X_n^21_{|X_n| \leq 1}| + |X_n|1_{|X_n| > 1}\right] < \infty,
 \]
 show that \(\sum_{n=1}^{\infty} X_n \) converges almost surely.

3. (a) Quote a criteria (necessary and sufficient conditions) for the precompactness of a family of probability measures on the space of continuous functions on \([0, 1]\).
 (b) Show that \(X_n \Rightarrow 0 \) if and only if \(X_n \rightarrow 0 \) in probability.

4. (a) If the random variables \(X_1, \ldots, X_n \) are independent with \(E[|X_k|] < \infty, \forall k \), show that
 \[
 E\left\{\prod_{k=1}^{n} X_k\right\} = \prod_{k=1}^{n} E[X_k].
 \]
 (b) Let \(X \) and \(Y \) be independent random variables with distribution functions \(F(x) \) and \(G(y) \) respectively. Show that
 \[
 P(X + Y \leq z) = \int F(z - y) \; dG(y).
 \]

5. (a) Quote (without proof) the First and Second (= direct and converse parts of) Borel-Cantelli Lemmas.
 (b) Let \(\{X_n\} \) be a sequence of independent and identically distributed random variables with zero mean and finite fourth moments. If \(S_n = \sum_{k=1}^{n} X_k \), show that \(S_n \rightarrow 0 \), almost surely.