Numerical Analysis Preliminary Examination
Spring, 2011

NAME _________________________ SCORE _______________________

Instruction: Do all problems and show all your work.

[1] (10pts) Consider the Steffensen method for nonlinear equation \(f(x) = 0 \):

\[
x_{n+1} = x_n - \frac{f(x_n)^2}{f(x_n + f(x_n)) - f(x_n)}.
\]

Show that this is quadratically convergent under suitable hypotheses. Please state the hypotheses and give your proof.

[2] (10pts) Let \(x_k \) and \(x_{k+1} \) be two successive iterates when Newton’s method is applied to find the zeros of a polynomial \(p \) of degree \(n \). Show that there is a zero of \(p \) within distance \(n|x_k - x_{k+1}| \) of \(x_k \).

[3] (10pts) Suppose that a matrix \(A \) is diagonally dominant. Show that the Gauss-Jacobi’s method for \(Ax = b \) converges.

[4] (10pts) Suppose that \(A \) is weakly diagonally dominant and is irreducible. Show that the Gauss-Jacobi’s method for \(Ax = b \) also converges.

[5] (10pts) Find a Householder’s transformation to convert the following vector \(\mathbf{v} \) into \([0, 0, 0, \alpha]^T \) with \(\alpha \) being the norm of the vector \(\mathbf{v} \):

\[
\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}
\]

[6] (10pts) Explain how one can find an orthonormal matrix \(Q \) and a lower triangular matrix \(L \) for a given square matrix \(A \) such that \(A \) can be factored into \(A = QL \).

[7] (10pts) Define the QR iterative method for numerical solution of eigenvalues of symmetric matrix \(A \). Explain each step.

[8] (10pts) Define the least square data fitting problem and explain how to use the SVD method to solve the least square data fitting problem.

[9] (10pts) Let \(a = x_0 < x_1 < \cdots < x_n < x_{n+1} = b \) be a partition of \([a, b]\). For \(f \in C[a, b] \), let \(S_f \) be the \(C^2 \) natural cubic interpolatory spline of \(f \), i.e.,

\[
S_f(x_i) = f(x_i), \quad i = 0, 1, \cdots, n + 1, \quad S'_f(a) = 0 = S''_f(b),
\]

Suppose that \(f \in C^2[a, b] \). Show that

\[
\int_a^b |S''_f(x)|^2 dx \leq \int_a^b |f''(x)|^2 dx.
\]

[10] (10pts) Let \(B^n_i(x) \) be B-spline of order \(n \) over knots \(x_i, x_{i+1}, \cdots, x_{i+n} \). Show that \(B_i(x) \geq 0 \) and

\[
\sum_i B^n_i(x) = 1.
\]