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a b s t r a c t

New insights into interdisciplinary engineering endeavors, from classical modeling to

nano–macroscale extrapolation and critical evaluation, weigh heavily on the pervasive

nature of thermodynamics in the physical world. Just as statistical thermodynamic

approaches provide a beneficial complement to a process-based macroscale thermodynamic

approaches with physical systems, a Lagrangian approach to energetics in biological sys-

tems can, we believe, provide a beneficial complement to popular Eulerian approaches.

Statistical thermodynamics is used as a springboard for some analogies that are similarly

used to leap into the ecological scale. The Lagrangian simulation, a discrete simulation,

is implemented with a spreadsheet approach, a discrete simulation approach, and a new

stochastic differential equation solution approach. The Lagrangian approach complements

the more widely used continuous (or Eulerian) simulation approaches such as STELLA or

Environ theory approaches. The Lagrangian approach decomposes energy into small pack-

ets or ecological quanta. An ecological entropy is computed based on nodal contacts in

the network, with the notion that nodal contact is analogous to molecular speed. In the

cases shown, the results of ecological entropy appear generally consistent with thermody-

namic entropy. A newly available simulation package (ECONET) enabled an easy Lagrangian

approach to analyzing the Cone Springs and Oyster ecological models. An analogy between

nodal contact numbers and molecular speed was developed to enable computation of an

ecological entropy. There is a similarity between classical and ecological entropy based on

similarity in shape of the Maxwell–Boltzmann distributions to the packet-nodal contact

numbers. An ecological temperature can be defined based on this similarity. Selected ratios
of ecological entropy versus classical macroscopic entropy appeared to have some degree

of robustness. Other aspects of ecological thermodynamics remain to be developed. It is felt

that the ecological thermodynamics approach presented offers an improved way to combine

biochemical and ecological entropy. A sound combination of entropies at multiple scales will

easu

lated, closed and open systems. One must also realize that
help bring together m

1. Introduction
An ecological thermodynamics course should review the laws
of thermodynamics in the classical sense. The course properly
investigates some models showing how these laws describe
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rements at disparate scales.
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solids and gases at the microscopic level in the context of iso-
thermodynamic theory we have today was developed along a
circuitous path (see Truesdell, 1980 for a historical overview of
classical thermodynamics history).

mailto:btollner@engr.uga.edu
dx.doi.org/10.1016/j.ecolmodel.2007.04.030


n g

•

•

i
m
i
o
e
m
r
e
w

t
b
A
t
T
t
d
l
p
n
t
a
1
n
b

2
g

2

T
t
p
r
y
e
a

i
t

2

T

(

e c o l o g i c a l m o d e l l i

The inquiry herein pursued the following broad objectives:

Evaluate the use of selected discrete simulation approaches
for modeling movements of small entities within compart-
mental systems.
Using discrete simulation approaches, initiate the devel-
opment of an ecological thermodynamics that respects
classical statistical thermodynamics and defines compat-
ible concepts on ecological scales.

To build a rigorous basis for physically based design, ecolog-
cal or otherwise, one must begin with energetics. The system

ust be clearly defined, thermodynamic coordinates must be
dentified, and an effective equation of state must be devel-
ped. Thermodynamic coordinates may include temperature,
nergy, constituents, and possibly ecological orientors. One
ay then analyze many systems to determine the relative

obustness of the coordinate set. As trends begin to emerge,
cological engineering will be on its way to taking its place
ith other engineering disciplines.

An underlying sense pervaded that basing our defini-
ion of thermodynamic principles on molecular and atomic
ehavior was insufficient to describe ecological problems.
dditional approaches were required to enable scaling from

he molecular to the ecological temporal and spatial levels.
he fundamental definition of entropy is based on a statis-

ical distribution of molecular and atomic states. Once the
istributions become multimodal, scale-up becomes prob-

ematic without some additional tools. The purpose of this
resentation is to introduce an inquiry that may lead to
ew approaches for analyzing thermodynamics of ecosys-
ems. The approach begins with considerations of systems
nd is oriented around network environ analyses (Patten,
978; Gattie et al., 2005) and will be augmented by an alter-
ative analyses based on a Lagrangian approach, described
elow.

. Fundamental laws and approaches of
eneral and statistical thermodynamics

.1. Zeroth law

wo systems in thermal equilibrium with a third system are in
hermal equilibrium with each other. The discussion of tem-
erature underlies this discussion. Note that some authors
efer to the zeroth law as the third law. Jorgensen (2001) anal-
ses the numbers of observations needed to characterize an
cological system from an individual particle consideration
nd concludes that the task is nearly impossible.

It is interesting to speculate on what the zeroth law means
n the ecological context, where the association to tempera-
ure with motion may become harder to describe.

.2. First law
he first law is formulated to represent three ideas:

1) the existence of an internal energy function, where inter-
nal energy may be due to temperature induced molecular
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movement, latent energy expressed in phase changes, or
latent chemical energy expressed in chemical reactions;

(2) the principle of conservation of energy (and mass); and,
(3) the definition of heat as energy in transit by virtue of a

temperature gradient.

2.3. Closed system

When a closed system whose surroundings are at a differ-
ent temperature and on which mechanical work may be done
undergoes a process, and then the energy transferred by
non-mechanical means, equal to the difference between the
change of internal energy and the mechanical work is called
heat. Latent (phase change) and chemical energy are treated
as components of the internal energy. A closed system analy-
ses is inherently Eulerian, meaning that one focuses on flows
at the boundary and assumes uniform conditions within the
confined space.

2.4. Open system

The first law as applied to the open system says that the net
energy change relative to the system boundaries is equal to
the change of energy per unit time within the system. If the
net change within the system is zero, the system is said to be
in steady state if the inputs and outputs are also not chang-
ing with time. One usually analyses the open system using
rate units. Cengel and Bowles (2002) provide some excellent
examples of Eulerian first law analyses. One may also perform
Lagrangian or discrete analyses on these systems, as will be
demonstrated. There seems to be broad consensus that the
first law is generally applicable to ecological systems of all
scales. The ease of defining energy across a broad ranges of
spatial and distance scales make this possible.

2.5. Isolated system

A system wherein no mass or energy is exchanged across the
system boundary. Lagrangian analyses can potentially reveal
dynamics of energy within an isolated system, whereas the
Eulerian analyses provide little additional information.

2.6. Second law

The second law states that the net entropy generated in a
process is equal or greater than zero. Zemansky and Dittman
(1997) discuss the Clausius (impossible to construct a refrig-
erator requiring less work than that associated with the heat
being transferred from a cold to a hot thermal energy reser-
voir) and Kelvin–Plank (impossible for a heat engine to do more
work than the equivalent heat transferred from a hot to a cold
thermal energy reservoir) variations of the second law. Both
these variations essentially state that the perpetual motion
machine is impossible. The reversible process generates zero
entropy. Cengel and Bowles (2002) provide excellent examples
of second law analyses with and without chemical reaction

in nonliving systems. They consider isolated, closed and open
systems. Entropy and second law analyses dictate the direc-
tion of a process. These concepts are also important in the
notion of goal functions, further discussed below. Entropy is
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related to the probability that a state will occur. Disorder is
more likely to occur than an ordered system. Transition to a
higher probability, more disordered state involves an increase
in entropy. Whalley (1992) is one of many references that sum-
marize our knowledge of classical entropy, macroscopically
and microscopically.

The introduction of living entities in a system compli-
cates the estimation of entropy from a microscopic sense. The
macroscopic balance is still regarded as valid, with the entropy
generation term being the impacted parameter. Aoki (2001)
gives an excellent summary of efforts to compute macro-
scopic entropy balances in ecological systems. The above
statements imply that organisms are on a trajectory leading to
death.

Zemansky and Dittman (1997) provide a concise overview
of statistical thermodynamics for gases and solids. They argue
that number of energy states possible for a set of particles far
exceed the number of particles in a gas. The thermodynamic
number (˝) of a particular macro state is given by

˝ = gN1
1

N1!

gN2
2

N2!
· · · (1)

where gi represents the number of quantum states yield-
ing energy ei and Ni represents the number of particles at
that energy. The thermodynamic number is identical to the
number of ways a sample of Ni particles can be drawn (with
replacement) from a population when particles Ni are indistin-
guishable. Eq. (1) states that the total thermodynamic number
is the product of the numbers of the respective Ni.

The Maxwell–Boltzmann theory enables statements con-
cerning temperature as shown in Fig. 1. In our case, we are in

effect looking at contact numbers in lieu of molecular speed,
so the temperature indicator would be a contact number
indicator. The Maxwell–Boltzmann distribution is the proba-
bility density of molecule numbers at a given speed as shown

Fig. 1 – Hypothetical Maxwell–Boltzmann distributions
showing the effect of temperature (T1 < T2 < T3) on the
distribution of molecular speeds w (from Zemansky and
Dittman, 1997).
2 0 8 ( 2 0 0 7 ) 68–79

in Eq. (2).

dN

dw
= 2N√

2�

(
m

kT

)
w2e−0.5mw2/kT (2)

where N is the number of molecules at speed w, w the molec-
ular speed (L/T), k the Boltzmann constant, T is the absolute
temperature (K)

Eq. (2) is the culmination of a rather lengthy derivation
given by Zemansky and Dittman (1997). The right hand side of
Eq. (2) defines the Maxwell–Boltzmann velocity distribution.
Note the effect of temperature on the distribution shape as
highlighted in Fig. 1.

Zemansky and Dittman (1997) give the following formula-
tion for entropy as derived from statistical mechanics.

S = −k

∞∑
i=1

Ni ln
Ni

gi
+ kN → Sspecific ≈ k

∞∑
i=1

ln
1
pi

(3)

In our case, contact number is analogous to molecular
speed, the mass of the packet (unity here) is analogous to the
molecular mass, m; the number of possible quantum energy
states that the packet may be distributed over (g) is analogous
to the number of contacts possible in the nodal network; the
number of molecules at speed w is analogous to the number of
packets Ni contacting a specified ‘i’ number of network nodes;
the equivalent of the Boltzmann constant k is not specifically
defined. The probability pi is the ratio of the number of states
over the number of possible contacts. It is noted that other for-
mulations for the thermodynamic probability exist and lead to
modified forms of the Maxwell–Boltzmann distribution.

3. A Lagrangian view of Eulerian systems

Before defining the Lagrangian systems approach, we review
the classical Eulerian approach. The classical Eulerian sys-
tem is one that identifies a conserved currency (e.g., mass or
energy) and quantifies various network properties of systems.
A Eulerian approach common in the ecological community is
the use of simulation packages such as STELLA for solving sys-
tems of first order differential equations (ODEs) for dynamic
analyses of nodal states within systems. Network environ
analyses (NEA), developed by Patten (1978) is typical of a steady
state Eulerian approach wherein an input–output approach
is taken to describe flows within nodal networks. Another
Eulerian approach with many similarities to NEA includes
Ascendancy analyses (Ulanowicz, 2000). An ascendancy anal-
ysis is similar to NEA in initial setup. The major difference in
the approach is in the network properties computed.

The Lagrangian approach begins with typical continuous
flow systems and discretizes them into finite sized entities
that may be directed along various paths based on proba-
bilities. Thus, the Lagrangian approach is a special case of
discrete simulation and may be analyzed with discrete simu-
lation techniques. Discrete simulation is sporadically used in

ecological research (see Atkinson and Shorrocks, 1981). Tech-
niques involving Markov analyses could be viewed as discrete
and are somewhat common (see Puterman, 1994) but little
used compared to continuous simulation approaches such as
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energy history represents past history. A working hypothesis
of this inquiry is that interesting possibilities may exist when
one places very low quality energy along side of high quality
energy. In a true steady state analyses, packets can accumu-
ig. 2 – Archetypical network environ showing energy flow
oop, dissipation and an output.

TELLA. Accounts of the Lagrangian variant of discrete simu-
ation are sparse.

A prototype ecology represented by the figure below was
nalyzed using network environ theory and a “particle” sim-
lation approach. The network environ theory, based on state
pace and input–output modeling approaches represents a
lassical Eulerian approach to solving the problem and can
e easily applied to problems of many scales. The particle
imulation approach represents a Lagrangian ride through the
ystem and is inherently more difficult to apply because every
etail must be specified in theory. It appears at first glance to
e dynamic in that pulses or packets of energy or mass are sent
hrough the system in a discrete fashion from some known
tarting state. The starting state is an arbitrary zero mass or
nergy state that is admitably meaningless. The transition
robabilities from one node to the next are indeed similar to
hose in the transport matrix from network environ analyses
nd are derived assuming steady state. One possible connec-
ion with a dynamic analyses is that one may see an output
esponse with zero inputs; however further investigations are
eeded.

Nodes in the Lagrangian model receive inputs from other
ndicated nodes based on probabilities of total mass or energy
t that node. For example, node 1 receives 110 energy units
n Fig. 2. In the steady state condition, 50 of those units go to
ode 2, for a probability of 0.4525 as shown in Fig. 2. One must
ompute the transport probabilities for each node as shown
n Fig. 2. An excel spreadsheet provides a suitable platform for

very simple implementation of the Lagrangian concept. It
hould be noted that the scheme for managing the energy bal-
nce in the Lagrangian approach implies that energy in equals
nergy out, a direct application of the first law.

The basic challenge and potential of the Lagrangian anal-
ses is to track the route traveled by each packet of mass
r energy. One must also provide timing information for the
ovement of the packets through the systems, usually from
statistical distribution. Energy packets in Fig. 2 represent 0.1
nergy units. A group of 1000 packets were introduced into the
etwork at node 1 and 100 were introduced into the network
t node 2 for each pulse event. The direction of the packets

o a given node depends on the probability of flow in a given
irection. The probability is figured by dividing the flow in a
iven direction by the total outgoing flow from the respective
odes.
gh a simple three-node system with two inputs, a recycle

Energy packets enter the system at an arbitrarily defined
state of “1”. Passage through a node causes an incremental
change of the state by 1. Therefore, packets entering at node 1
have a state of “2” as they go to node 2 or node 3. Packets travel-
ing the longest path would have a value of “4” as they returned
to node 1. Due to the recycle between node 3 and node 1,
multiple system snapshots are required to determine the dis-
tribution of states contained in the nodes. Each snapshot was
made after passage of packets around the longest route back to
node 1. After four snapshots, packets can have accumulated as
many as 13 different state increments, with state number (e.g.,
history) becoming exponentially more complicated with each
pulse event. The analysis was limited to four snapshots due to
logistic considerations in using the Excel platform. The prob-
ability of energy persisting in the network with a high state
becomes very low. Knowledge of energy state persisting in the
network may provide insights into network behavior, thus we
desire to track energy state distributions. Results shown in
Figs. 3–5 were obtained by considering 1000 realizations with
uniform random numbers providing the basis of probability
calculations for each realization.

Some packets of energy at a given node may represent
very low quality energy while some represent reasonably high
quality energy. The assumption is that travel through the
network degrades the quality of the energy. The low quality
Fig. 3 – Histogram showing hypothetical states of energy
packets residing in node 1 after four pulses, based on an
average over 10 runs.
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Fig. 4 – Histogram showing hypothetical states of energy
packets residing in node 2 after four pulses, based on an
average over 10 runs.

Fig. 5 – Histogram showing hypothetical states of energy
packets residing in node 3 after four pulses, based on an

Note that log p and Ln 1/p were forced to zero if p = 0.
average over 10 runs.

late very low energy levels, albeit the probability of observing
these packets becomes extremely small as will be seen below.

Energy qualities of the nodes of Fig. 2 are shown in Figs. 3–5,
respectively assuming four pulse events. The fact that some
packets at node 1 are not 1000 is due to the recycle from
node 3. Similar explanations exist for the other nodes. The
fact that the distributions each could be viewed as similar to
the Maxwell–Boltzmann distributions from classical statisti-
cal thermodynamics is of interest.

Details of history at node 1 are shown in Fig. 6. The Shan-
non information entropy is shown along with the Boltzmann

entropy (where the Boltzmann constant is arbitrarily assigned
as 1). The mixing of packets with different energy states and
resulting effects of ‘far from equilibrium’ conditions (De Groot

Fig. 6 – Example histograms showing details of contacts of
2 0 8 ( 2 0 0 7 ) 68–79

and Mazur, 1984) occur is of interest from a thermodynamic
viewpoint. Each network will have different properties due to
its inputs, outputs, elements, and element connections.

Another aspect of the Lagrangian analyses is to consider
what the number of nodal contacts that the energy packets in
a given node have completed. Each packet of energy by def-
inition contacts a packet one time in the process of entering
and leaving a node. This simple approach does not introduce
the storage concept, which may result in multiple contacts
between entrance and exit. Results are summarized in Table 1.
The input contact average at node 1 is notably higher than 1
due to the recycle with node 3. As one proceeds to node 2, the
contact is nearly two because the impact of recycle with node 3
is greatly diminished. Node 3 is complicated by the input from
1 and 2. The most interesting note that the effective change of
each node is slightly higher that a simple contact.

Is all energy equal in the potential work it can accom-
plish? It is assumed herein that each time an energy bundle
passes through a node, it accumulates states (e.g., history)
related to the number of nodes it has passed while within
the system. The total energy within a system may therefore
contain a diverse history. The heart of the Lagrangian anal-
ysis is to develop that history for each node in the system.
Having this history enables one to compute a measure of
homogeneity of the energy known as the Shannon informa-
tion entropy in a classical sense. It was interesting to compute
the Shannon information entropy analogue along with the
Boltzmann entropy analogue for the inputs and outputs of
each node based on distributions of the respective conditions
similar to those shown in Fig. 6. To keep from confusing these
‘entropies’ with accepted thermodynamic counterparts, we
use SE instead of S for ecological entropy. The Shannon infor-
mation entropy (SEInform) and specific Boltzmann ecological
entropy (SESp Boltz) are respectively computed using the fol-
lowing equations:

SEInform = −kB

No. States∑
State=1

pi log2pi, where pi = nodei∑No.States
State=1 nodei

;

SESp Boltz =
No. States∑
State=1

kB Ln
(

1
pi

)
(4)
2 i i i

Shannon and Boltzmann entropy values at the entrance
and exit of each bin are shown in Table 1. Details of the
entropy calculations for node 1 are also shown in Fig. 6. Nodes

packets entering and leaving node 1 after four pulses.
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Table 1 – Summary of Nodal Inputs and Actions for the hypothetical model of Fig. 2

Node Input contact
average

Output result
average

Effective
change

SEinform SEBoltz
a Entropy trendsb

SEinform SEBoltz SMacro

1 1.25 2.26 1.01 0.556 41.51 + + 0.1024
0.585 48.69

2 2.03 3.06 1.03 1.093 44.81 + − 0.0341
1.143 43.28

3 3.75 2.74 1.01 1.467 58.38 − + 0.0341
1.455 64.70

Combined – – – 3.116 144.7 + + 0.1707
3.183 156.7
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a An arbitrary value of 1.0 is assigned to the Boltzmann constant. En
b A positive sign connotes an increase in entropy due to the nodal ac

and 2 showed an increase in information entropy and a
ecrease in Boltzmann entropy. Node 3 exhibited the opposite
ehavior, due to the recycle with node 1. Node 3 was mov-

ng in a different direction relative to equilibrium than were
odes 1 and 2. Jorgensen and Svirezhev (2004) seem to rely on
he Shannon entropy more so than the Boltzmann entropy.
he macroscopic entropy is positive for all nodes and con-
equently the entire system. The dissipative effects coupled
ith the accumulation of capacity to do work is consistent
ith Prigogine’s assertion (see Prigogine and Stengers, 1984)

hat thermodynamic systems, while dissipating much energy,
ay have small zones moving further from equilibrium. A
ore exhaustive analysis of this system and additional sys-

ems may provide additional insights as to which definition
f entropy is the best for ecological systems. The ecology
ntropy calculation here is not process based as is the case
ith macroscopic entropy; ecological entropy looks at state

hanges independent of process.
In our simplified network, node 2 has the highest output

esult average (Table 1). It would be interesting to know the
oint on the x-axis where the free energy ceases decreasing
nd begins to increase. Some tagged experimentation may
elp resolve this question in a variety of network configura-
ions.

One may estimate the macroscopic entropy of each of the
odes. Entropy may be written as follows:

Ṡ = �Ṡexch + �Ṡgen (5)

here �Ṡ is the change in entropy production rate in the sys-
em (E/K − T), �Ṡexch the entropy exchange rate (E/K − T), and
Ṡgen is the entropy generation rate (E/K − T)

In the above formulations, units are energy (E) per degree
per time unit. At steady state, �Ṡ due to thermal effects is

ero. The exchange entropy is a function of dissipated heat,
Q/T where T is taken at 293 K. The macroscopic entropy of
ach node may be expressed as:
Ṡ = 0 = �Ṡexch + �Ṡgen → �Ṡgen = �ṠMacro = Q̇diss

293 K
(6)

Results are shown in Table 1. Following Michaelian (2005),
e combine the results of the nodes represent theresults for
nits here are arbitrary.

the system. It is interesting to note that both the statistical and
macroscopic approaches suggest net entropy for the entire
system. The work of relating these findings to other outputs
of network environ analyses remains to be completed.

It is interesting to explore some parallels between the clas-
sical statistical thermodynamics definition of thermodynamic
probability as shown in Eq. (1) and the ecological thermody-
namic probability leading to the distributions in Figs. 3–5. In
classical thermodynamics, gi represents the number of pos-
sible quantum state combinations leading to a given energy
level ei. One possible ecological parallel to gi is the number of
possible contact combinations leading to a given energy level
ei. In classical thermodynamics, Ni represents the number of
atoms/molecules having energy level ei. The ecological paral-
lel is the number of energy packets having energy level ei. The
energy packet thus becomes the basic quanta of energy in this
analysis.

It is also interesting to consider the distributions of contact
in the context of available free energy. As the number of con-
tacts increases, the net free energy would generally decrease.
The enzyme suits necessary to metabolize further compounds
would presumably increase in complexity. However, life pro-
cesses, create local niches wherein free energy increases as
biological organizational processes. We believe that the likeli-
hood of complexity increase occurring with a given ecological
quanta is directly related to persistence in the network.

A fundamental premise of network environ analyses is
that the system is at steady state. Considering the Lagrangian
analyses, the subtle difference between ‘steady state’ and
‘dynamic equilibrium’ becomes interesting. (We view ‘static
equilibrium’ or equilibrium unqualified as connoting no
motion.) A system can have equal inputs and outputs from
the Eulerian viewpoint and be at a macroscopic ‘steady state’
or ‘dynamic equilibrium’ but still be changing its configuration
on the microscale. This we feel a specification of ‘steady state’
and/or ‘dynamic equilibrium’ require a scale qualifier.

According to Reynolds (1968), the Shannon information
entropy is equivalent to the Gibbs definition of entropy (where

we have taken the Boltzmann constant equal to unity). The
Boltzmann distribution assumes that quantum states are
equally possible in the universe of ˝ numbers of quantum
states. The Gibbs (or Shannon information) formulation does
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not impose this restriction. It is felt that the Shannon formula-
tion may be more appropriate at this juncture. Resolving the
apparent discrepancy between the Shannon and Boltzmann
entropy trends would be aided by a similar analyses of addi-
tional models.

ARENA (see Kelton et al., 2004), a discrete simulation frame-
work, enables one to track attributes of individual packets was
used to reproduce the spreadsheet results presented above.
The ARENA model adds a contemporary graphical user inter-
face to the classic SIMON discrete system (see Pegden et
al., 1995) and has some capability for continuous simulation.
The student version of ARENA is limited in the availability
of custom interfaces and limited in the number of entities
that may be moving within a system during a simulation
run. The student version (which may be freely copied) has a
complete implementation of SIMON (hereafter referred to as
SIMON/ARENA) and the limit of 150 entities has not had an
adverse impact on problems addressed to date. Working at
the SIMON level is recommended initially in order to acquire
the feel of discrete simulation methodology.

SIMON/ARENA enables one to control timing of the packets
through the system via the use of common statistical distri-
butions. The discrete simulation package treats each node as
a queue (with user selectable ordering), a seizure operation,
where the node ‘takes possession’ of the packet and executes
an operation. Operational counts and process time tallies are

possible. A user programmable time delay is used to simu-
late the residence time. Decision branching using probabilities
from network environ analyses is easily implemented. A por-
tion of the model for one node is shown in Fig. 7.

Fig. 7 – Schematic of the Cone Springs model as rendered
by ECONET.
2 0 8 ( 2 0 0 7 ) 68–79

The SIMON/ARENA framework provides additional flex-
ibility for stamping each packet with a unique identifier
associated with passage through each network node. This
package can also be used to model ecological problems of
greater complexity. This package also enables non-steady
state analyses. The storage features of network environ anal-
yses can also be incorporated in a straightforward away. The
SIMON/ARENA discrete modeling package also enables one to
move beyond the limit of three or four passes. An analysis
of the simple model shown in Fig. 2 yielded results similar
to those presented above. Using SIMON/ARENA enables one
to exercise minute control of a packet through a particular
node. The control is so detailed that minute manipulation may
not be practical because the data to justify specifics would be
difficult to obtain.

3.1. Lagrangian analyses of two ecological systems

Programming SIMON/ARENA to track individual elements is
a relatively cumbersome task because of the minute con-
trol requirements. An advanced modeling and differential
equation solution package known as ‘ECONET’ (see Kazanci,
in press) has been configured to solve systems of deter-
ministic or stochastic differential equations with particle
tracking (Tollner and Kazanci, 2007). ECONET is similar to
STELLA in that it provides solutions to a series of first order
continuous ODEs arising from typical control volume analy-
ses. Rather than the detailed process programming required
by SIMON/ARENA, ECONET uses a chemical mass action
approach for managing the movement of energy or mass pack-
ets (or quanta) from one node to the next.

The important ECONET enhancement now available is
the capability of solving stochastic ODEs based on Gillespie’s
stochastic algorithm (Gillespie, 1977). A particle-tracking fea-
ture now under development enables Lagrangian-type particle
tracking. We are applying the ECONET Lagrangian particle
tracking approach to an ecological thermodynamic analyses of
two well publicized data sets: Cone Springs (Ulanowicz, 2000)
and Oyster reef (Dame and Patten, 1981).

The Cone Springs model is shown schematically in Fig. 7.
The ECONET model was run two different times with two dif-
ferent packet sizes. An indication that a robust steady state
values of stocks was reached was that the total number of
packets in the system was about 6900 in both runs with simi-
lar distributions among the nodes. The nodes in the analyses
included plants, bacteria, detritivors, carnivors and detritus.
Results for one run are shown in Figs. 7–10. Fig. 8 shows the
path from a starting condition to steady state. Steady state was
reached in approximately 0.5 time units. The number of itera-
tions over two time units was about 137,000. Particles passing
through the system numbered about 34,000. Histograms of
packet numbers versus nodal contacts are shown in Fig. 9.
A composite histogram of packet numbers vs. nodal contacts
is shown in semilog form in Fig. 10. The results for individual
nodes take on the shape of the Maxwell–Boltzmann distribu-
tion and the linear tail in Fig. 10 follows from the log transform.

The detritus node was dominating in this model.

The Oyster model is shown schematically in Fig. 11. The
ECONET model was run two different times with two dif-
ferent packet sizes. An indication that a robust steady state
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Fig. 8 – Stock values vs. time units

alues of stocks was reached was that the total number of
ackets in the system was about 40,000 in both runs with sim-

lar distributions among the nodes. The nodes in the analyses
ncluded filter feeders, deep detritus, microbiota, meofauna,
eep feeders and predators. Results for one run are shown in
igs. 12–14. Fig. 12 shows the path from a starting condition to
teady state. Steady state was reached in approximately 1000
ime units. The number of iterations over two time units was

bout 3.2 million. Particles passing through the system num-
ered just over 1 million. Histograms of packet numbers vs.
odal contacts are shown in Fig. 13. A composite histogram of
acket numbers vs. nodal contacts is shown in semilog form

ig. 9 – Final plot matrix of packet numbers vs. nodal contacts by
Cone Springs ECONET model run.

in Fig. 14. The results for individual nodes take on the shape
of the Maxwell–Boltzmann distribution and the linear tail in
Fig. 14 follows from the log transform. The filter feeders node
followed by the deep detritus node was dominating in this
model.

The Maxwell–Boltzmann distribution shape is discernable
in the Cone Springs and Oyster models. Each model tends to
be dominated by one or two nodes. It is tempting to simply

add the entropy from the respective nodes; however, the more
correct way appears be to accumulate the packets numbers
contacting the respective node numbers and recomputed the
entropy, since the logarithm is not a linear function. These

node for the Cone Springs model run shown in Fig. 8.
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Fig. 10 – Cumulative plot of the natural logarithm of packet Fig. 12 – Stock values vs. time units in an Oyster reef model
ECONET run.

Table 2 – Summary of Nodal Inputs and Actions for the
Cone Springs model run of Fig. 8

Node SEinform SEBoltz SMacro

Bacteria 1.04 23.30 11.18
Carnivores 1.26 27.57 0.69
Detritivors 1.42 33.45 6.19
Detritus 1.27 59.10 10.61
Plants 0.00 0.00 6.84

Total system 1.68 55.39
Nodal sum 4.99 143.42 35.51
numbers versus nodal contacts for the Cone Spring model
run of Fig. 8.

results are shown in Tables 2 and 3 along with the macroscopic
entropy for each node. It is interesting to note that the analysis
thus far treats every node as equal in terms of effect on the
energy packet. It is conceivable that one could bring to bear an
appropriate Maxwell–Boltzmann type of biochemical entropy
to packets leaving each node in an additional post-processing
step. This may enable an addition of biochemical entropy to
ecological entropy in a way that goes beyond a simple addition

of the type used by Jorgensen and Svirezhev (2004) when they
added biochemical and information entropy.

A summary of selected entropy ratios for all three mod-
els evaluated is shown in Table 4. The Boltzmann entropy

Fig. 11 – Schematic of the Oyster reef model as rendered by
ECONET.
Note: The energy units are kcal/m2 year. An arbitrary value of 1.0 is
assigned to the Boltzmann constant.

computed using total nodal contacts in the system versus the
Boltzmann entropy summed for each node (B.lumped/B.nodal)
was fairly consistent over all models. The related ratios involv-
ing Shannon entropy (Shan. lumped/Shan. Nodal) was not as
consistent. The essential nonlinearity of the entropy defini-
tion is obvious in that these ratios are far from unity as one

would expect from a linear process. This raises a doubt that
the sum of the entropy in a system is simply the sum of nodal
entropies.

Table 3 – Summary of Nodal Inputs and Actions for the
Oyster model run of Fig. 12

Node Shannon
entropy

Boltzmann
entropy

Macroscopic
entropy

Filter feeder 0.00 0.00 31.34
Dep. Detritus 1.15 80.00 7.69
Microbiota 1.36 11.58 7.18
Meofauna 1.57 27.16 4.46
Dep. feeders 1.94 29.15 0.54
Preditors 1.31 39.70 0.49

Total system 1.53 91.05
Nodal sum 7.34 187.60 51.7

Note: The energy units are converted from kcal/m2 day to
kcal/m2 year. An arbitrary value of 1.0 is assigned to the Boltzmann
constant.
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Fig. 13 – Final plot matrix of packet numbers vs. nodal c

Fig. 14 – Cumulative plot of the natural logarithm of packet
numbers versus nodal contacts for the Oyster reef model
run of Fig. 12.

Table 4 – Comparison of Shannon, Boltzmann and macroscopic

Model Shan. lumped/Shan.
Nodal

B.lumped/B.
Nodal

Shan.
m

Fig. 2 0.60 0.43 10.
Cone Springs 0.34 0.39 0.
Oyster 0.21 0.49 0.
ontacts by node for the Oyster model run in Fig. 12.

The respective comparisons of lumped/macro entropies
provided consistent results in the ecological models. The
Cone Springs and Oyster models had some similarity in
that they were dominated by one or two nodes. There is
no compelling reason to choose the Shannon information
entropy over the Boltzmann entropy based on the lumped
entropy/macroscopic entropy ratios. The same may be said
for the nodal sum to macroscopic entropy ratios with the
ecological systems. The arbitrary system shown in Fig. 2 var-
ied greatly, which is not surprising given the arbitrary energy
units. Another contributing factor to the difference may also
have been that the arbitrary system was not dominated by a
single node, as were the other ecological models.

4. Potential benefits of the Lagrangian
analyses

The Lagrangian analysis approach offers the capability to
view a conventional Eulerian model from additional view-

points. The statistical thermodynamics approach has been of
immense value to physicists and engineers for understand-
ing materials properties. Likewise, we believe that a statistical
approach (be it the one we propose or one that others may

entropy ratios on the indicated models

lumped/
acro

B.lumped/
macro

Shan.
Nodal/macro

B. Nodal/
macro

99 356.47 18.32 834.87
05 1.56 0.14 4.04
03 1.76 0.14 3.63
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propose) can further enlighten us on some key interactions
observed at the macroscopic level of ecological modeling. For
example, our models tend to show that there are always some
‘packets’ of energy (or mass) that circulate in the network
for long periods of time. Network configurations that result
in this circulation may impart some proclivity for emerging
properties. Our approach at least provides an inroad for quan-
tification of these properties that could be put to field test.

The second potential utility of the Lagrangian approach
for modeling relates to the understanding of scaling from the
bench to the field and on to the ecological unit. For example,
if a point or line source disturbance is placed on a boundary,
can we identify some scaling relationships that give insight to
how the effect impacts a space? We believe so and are now
commencing some analyses towards this end.

5. Summary

The ecological thermodynamics approach presented here
respects the isolated, closed and open systems as defined by
classical thermodynamics. The first law of thermodynamics is
contained herein as well in that energy is still conserved. The
nature of the energy (e.g., internal, other) needs further defini-
tion. The second law is respected in that the entropy is similar
and a scheme is available for what we believe will be a more
appropriate combination of classical and ecological entropy.

Much work remains. Many aspects of ecological thermody-
namics remain to be developed. The molecular speed–nodal
contact analogy leads to an association between thermody-
namic temperature and an ecological temperature via the
Maxwell–Boltzmann distribution. We have yet to define other
thermodynamic properties such as internal energy, pressure
and other properties.

Nodal processes as handled by the Spreadsheet,
SIMON/ARENA (Pegden et al., 1995) and ECONET approaches
must be further explored. They should be further compared
and contrasted with STELLA ODE-based approaches and
input–output approaches such as Environ analyses (Patten,
1978). The spreadsheet approached used was based on the
probabilities of going to the next node (or being dissipated)
that were generated with the Patten (1978) environ theory.
Similarly, the SIMON/ARENA approach also used these prob-
abilities. SIMON/ARENA provides flexibility in terms of nodal
size, storage and probability choices. ECONET on the other
hand uses mass action approaches common in reaction
kinetics. None of the approaches base transport from one
node to the next on respective gradients and conductance
coefficients.

The Maxwell–Boltzmann distribution is not necessarily the
only distribution from classical thermodynamics that may
be applicable. Maxwell–Boltzmann represents molecular gas
velocity. One may describe solids using a related distribu-
tion known as the Bose–Einstein distribution, which describes
molecular vibration speed. Statistical thermodynamics for liq-
uids is not well developed (Zemansky and Dittman, 1997). We

are focusing on the Maxwell–Boltzmann distribution as a type
for approximation purposes only.

At what point does the free energy of the material repre-
sented by multiple nodal contacts represent or correlate with
2 0 8 ( 2 0 0 7 ) 68–79

compounds with increasing free energy? Such an occurrence
would be consistent with the notion of Prigogine and Stengers
(1984) that enclaves of organization occur in regions where
much dissipative activity occurs. The fact that this may be
happening is a by-product of life.

A careful look at how cycling occurs in ecological systems
and associating the cycling with the blending of mass and/or
energy of varying states may offer insights into ecological
behavior in the future. It is believed that systems offering
highly diverse energy and mass will likely be much more
robust than those with simplified more simplified dynam-
ics. The ability to track ‘extreme event’ particles offers many
exciting possibilities and in our view forms the potential con-
nection to contemporary ecological thermodynamic theory by
Jorgensen (2001) and Jorgensen and Svirezhev (2004) and co-
workers and Patten (1978) and co-workers such as Fath et al.
(2004). It is felt that the Lagrangian analyses presented herein
will enable us to bridge measurement and observation scales
in a more seamless manner than will other approaches cur-
rently available.

6. Conclusions

An analogy between nodal contact numbers and molec-
ular speed was developed to enable computation of an
ecological entropy. There is a similarity between classical
and ecological entropy based on similarity in shape of the
Maxwell–Boltzmann distributions to the packet-nodal con-
tact numbers. An ecological temperature can be defined based
on this similarity. The similarity leads to some promising
concepts for entropy calculation. Other aspects of ecological
thermodynamics remain to be developed.

The discrete or Lagrangian modeling approach can be
implemented with spreadsheets (not recommended), with
specialized packages such as SIMON/ARENA or with a new
stochastic, particle tracking ODE solver that is newly available.
Some questions remain regarding the details of exactly how
the SIMON/ARENA, ECONET and input–output approaches
move energy or mass from one node to another.
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