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a b s t r a c t

Ecosystems can be abstracted into models consisting of compartments containing matter or energy,
transactional flows of matter or energy between compartments, inputs into the system, and outputs
from the system. Although direct transactions are measurable in the field, indirect transactions have
been demonstrated to have dominant effects. Integral network utility (U) is a summation of all direct
and indirect net transactions in a network presented in matrix format and developed as a feature of
Network Environ Analysis (NEA). While U can provide qualitative information about ecological interac-
tions between compartments, the nonzero-sum nature of indirect net transactions has made ecological
interpretation of quantitative network utility challenging. Here we aimed to examine U for nine 2- or
3-compartment ecosystem models from a throughflow perspective. For each model, we assigned inputs,
outputs, and flows algebraically using flow components traceable across the model, developed corre-
sponding flow (F) and throughflow (T) matrices based on these values, and used symbolic Matlab to
calculate the net adjacent flow intensity matrix (D) and U. Substituting algebraic combinations of flow
components with corresponding throughflow values allowed us to reduce elements of U to through-
flows to the maximum extent possible. Models with only simple input environs were fully throughflow
reducible, while models with more complex input environs exhibited one to three nonreducible ele-
ments in U. Throughflow reducibility was sufficient, but not necessary, for topological determination of
ecological relations of a model, as described by sign(U). Parametrically determined elements of sign(U),
along with the specific flow components influencing the sign of that element, could be readily identified
based on quantitative consideration of nonreducible flow components. We provide an example show-
ing that considering throughflow as a centrality measure can allow the identification of a quantitative
basis for network synergism. By allowing identification of specific subsets of transactional flows relating
to ecosystem complexity and qualitative differences between human-designed systems in the conven-
tional industrial model and evolved ecological systems, the throughflow perspective of U opens avenues
for designing more sustainable human systems.

© 2014 Elsevier B.V. All rights reserved.

. Introduction

Network Environ Analysis (NEA), a theoretical approach to the analysis of complex ecological systems, is a key area of research within

ystems ecology, itself a niche topic in the rapidly expanding area of network ecology (Borrett et al., 2014). Initiated and advanced by
atten (1978) and Matis and Patten (1981), the core of this environmental system theory is algebraic, static (steady state) and lin-
ar, descending from economic Input–Output Analysis (Leontief, 1936, 1986). More recently, a dynamic approximation methodology

Abbreviations: NEA, Network Environ Analysis; U, (uij) = integral network utility matrix; D, (dij) = net adjacent flow intensity matrix, or direct utility matrix;
, (gij) = (fij/Tj) = output environ flow intensity matrix; G′ , (g ′

ij
) = (fij/Ti) = input environ flow intensity matrix; F, (fij) = flow matrix; T, (Ti) = throughflow matrix.
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Kazanci and Ma, 2012; Shevtsov et al., 2009) and a particle tracking family of stochastic methodologies (Kazanci et al., 2009; Tollner et al.,
009) have emerged that promise tractable analysis of both non-steady state and nonlinear environs.

Integral network utility U = (uij) is a matrix measure of the overall relational benefits (uij ≥ 0) or costs (uij < 0) expressed between pairs
f compartments (i, j) in a system, as derived from transactional matter or energy flows, propagated over paths of all possible lengths,
xtending to i from j within that system. Mathematically, U is defined as the sum of powers m = 0, 1, . . ., ∞ of the net adjacent flow
ntensity matrix D; that is, U =

∑∞
m=0Dm (Fath and Patten, 1998; Patten, 1991, 1992). The signs of any selected pair of elements (uij, uji)

ithin U describe the overall relation of i with j in terms of one of nine possible familiar ecological interaction types; for example, (−, −)
ndicates competition, (+, −) indicates predation, and (+, +) indicates mutualism (Patten, 1991). Recent work on environ utility analysis has
lso revealed the mathematical basis for previously hypothesized properties of network synergism (Fath and Patten, 1998) and network
utualism (Fath, 2007), further supporting the usefulness of U in understanding ecological network function.
Throughflow, the sum of adjacent flows and inputs entering (or adjacent flows and outputs leaving) a specific network compartment,

lays a direct role in D, and therefore in calculating U (Patten, 1991, 1992). The sum of all throughflows Ti in a model, or the total amount
f matter/energy that travels through a network, is known as total system throughflow (Finn, 1976). This holistic network property is
elated to maximum power, positively correlates with network size and numerous network-level properties, and has been shown to be
egatively correlated with the network synergism index in large real-world and computationally-modeled ecosystems despite causing
roportional increases in this index in small theoretical models (Buzhdygan et al., 2014; Fath, 2004; Patten, 2014). Some species contribute
ore strongly than others to total system throughflow, but due to network homogenization, maintaining overall network structure is

lso necessary to sustain this parameter (Fann and Borrett, 2012). While individual throughflows are node-level properties that should be
onsidered alongside neighborhood- and network-level properties for the purpose of analyzing ecosystems (sensu Hines and Borrett, 2014),
t is clear that they contribute to network-level properties, at minimum, via contributions to total system throughflow. Indeed, throughflows

ere shown to be present in U relatively early in the development of utility analysis, when they were employed in demonstrating the
athematical basis for network synergism (Fath and Patten, 1998). This work revealed the presence of throughflows, along with flows, in
throughflow-dimensionalized elaboration of U for a 3 × 3 complete digraph; it is evident in the resulting matrix, although not directly

hown, that throughflows are ubiquitous in U itself for this nearly-generalized topology (Fath and Patten, 1998). More recently, Fath (2007)
mplicitly showed the presence of throughflows in U for five specific network topologies of two, three, or four compartments. In that work,
atios of flows to throughflows, fij/Tj or fij/Ti, were condensed into a set of variables gij and g′

ij
corresponding to the elements of the output

nd input environ flow intensity matrices G and G′, respectively (Leontief, 1986; Patten, 1991), to facilitate the algebraic description of D
nd U matrices for the corresponding networks.

Recent study of utility has employed both numerical and algebraic approaches. Patten and Whipple (2007) examined the extent to which
cological relations derived from U are determined by the specific links in the model digraph, as opposed to specific flow quantities using
umerical computation (also reviewed by Patten, 2014). For some relatively simple ecosystem models, all such relations are determined
y the overall structure of the model digraph, without regard to flow values (Patten and Whipple, 2007); that is, they are topologically
etermined. In other models, at least some of the relations are determined by the actual values of the flows fij within the network, a property
escribed as parametric determination (Patten and Whipple, 2007). While numerical methods are highly tractable using computational tools,
he resulting numerical values in U are essentially non-generalizable aggregates. Thus, trial and error is required to identify consistent
atterns using this approach. In contrast, Lobanova et al. (2009) used an algebraic approach to carry out similar work in four different
hree-compartment and three different n-compartment models. The authors identified overall patterns of relations based on the signs of
he elements of the resulting U, or sign(U), then highlighted which elements of sign(U) would vary parametrically and under what flow
onditions sign(uij) would be positive, zero, or negative for the given network topology. This approach is more computationally difficult,
ut it allows tracking of individual flow components across arithmetical matrix manipulations. Patterns of topological and parametric
etermination across multiple models are therefore more easily identified and described algebraically.

Since throughflows can be described as sums of individual inputs and flows (or outputs and flows), previous observations raise the
uestion of the extent to which a given ecological network’s U can be described in terms of algebraic combinations of its throughflows.
or example, Fath and Patten (1998) noted that individual flows could be replaced with throughflows in U for a three-compartment
esource competition model but did not carry out this substitution to the maximum extent possible (see Eq. (16) therein). Preliminary
ork on this and other simple ecosystem models suggested to us the likelihood that U may be entirely reducible to algebraic combinations

f throughflows for at least some model topologies. In the current work, we therefore sought to identify network topologies in which
lements of U can be reduced entirely to combinations of throughflows. For each of nine different simplified two- or three-compartment
cosystem models, we notated inputs, outputs, and internal flows as arithmetic combinations of algebraic flow component variables
toichiometrically balanced for consistency with static conditions. We then employed a symbolic computation approach to calculate U for
ach model. By substituting combinations of variables with their throughflow equivalents, we reduced elements of U to throughflows to
he maximum extent possible. Further analysis based in abstract algebra aided the identification of which network topologies did and did
ot produce U completely reducible to throughflows, and we looked for common features among each type of network. We also identified
hich matrix elements and specific flow parameters were critical in determining qualitative relations between compartments. Finally, we

onsidered how this “throughflow perspective” deepens current ecological interpretation of integral network utility and, more generally,
he understanding of ecological networks.

. Methods

.1. Model structures
Nine model structures, comprised of two 2-compartment models and seven 3-compartment models, were developed for analysis. Many
f these models have previously been analyzed in other contexts; e.g., Fath and Patten (1998) deal with a special (numerical) case of Model
and the general (algebraic) case for Model 4; Fath (2007) addresses general cases for Models 1, 3, and 4; Lobanova et al. (2009) examine
odels 3, 4, 6, and 7. All models were dissipative in that each compartment contained an output. Both two-compartment models contained
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Fig. 1. Two-compartment dissipative models used to calculate algebraic utility matrices. Black, numbered circles indicate compartments, and black arrows indicate internal
(
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i.e., intercompartmental) flows. Black bold arrows indicate inputs, while gray open arrows indicate outputs. Associated letters indicate algebraic values of the nearest input,
utput, or flow.

single input, with one model representing a simple canonical chain, i.e., flow between compartments was unidirectional, and the other
epresenting a simple canonical cycle, i.e., flows in both directions between compartments existed (Fig. 1). Analogous three-compartment
odels, a three-compartment chain and a three compartment cycle, each with one input, were included (Models 3 and 7, respectively;

ig. 2). Two types of competition models were developed, one in which two compartments directly competed for flows from a single, third
ompartment (Model 4), and one in which a single compartment gained flows from two different compartments (Model 5; Fig. 2). Model
built upon the resource competition model by including an additional flow from one competitor to the other, representing intraguild

redation (Fig. 2). Finally, Models 8 and 9 built additional complexity into the three-compartment cycle of Model 7 by adding an additional
nput and a reverse flow between two compartments, respectively (Fig. 2). Collectively, these models are not exhaustive of all possible
wo- and three-compartment dissipative models, but they address different levels of complexity in terms of both inputs and patterns of
ows.

Unlike previous analyses by Lobanova et al. (2009), Fath (2007), and Fath and Patten (1998), each of the nine models herein were
escribed not in terms of algebraic forms of individual inputs, outputs, and flows, but rather as algebraic decompositions of the overall
odel, labeled as a, b, c, and so forth (Figs. 1 and 2). Thus, inputs, outputs, and flows shared individual algebraic subcomponents (i.e., flow
omponents) with each other within a given model, allowing a more parsimonious analysis of the movement of matter or energy through
t (Luper et al., 2011). Cross-comparisons of the same variables across different models should therefore not be assumed valid.

Fig. 2. Three-compartment dissipative models used to calculate algebraic utility matrices. Compartments, flows, inputs, and outputs are designated as in Fig. 1.
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.2. Symbolic computation

Flow matrices Fm were developed by inspection of the algebraic flows within each model m in accordance with the approach developed
y Patten (1978); that is, each element fmij is the flow from compartment j to compartment i within m. Corresponding throughflow matrices
m were developed similarly, with each element Tmi algebraically representing the throughflows for compartment i within m (Patten, 1978).
rom each Fm and Tm, the corresponding net adjacent flow intensity (direct utility) matrix Dm was algebraically computed using Symbolic
atlab (MathWorks, Inc.; Natick, MA, USA) such that the elements dmij = (fmij − fmji)/Tmi (Patten, 1991). Finally, the integral utility matrix

m was algebraically computed in Symbolic Matlab as (Im − Dm)−1, where Im is the n × n identity matrix for model m, consisting of n
ompartments (Patten, 1991). This approach to calculating Um assumes that the infinite series Um =

∑∞
n=0Dn

m converges, which requires
hat Im − Dm is invertible (Patten, 1991, 1992). This, in turn, has been proven to hold if and only if |�i| < 1, where �i is the ith eigenvalue of
m, for all i from 1 to n (Kawasaki’s Convergence Theorem, Patten, 1991).

.3. Reduction of Um and algebraic substitution of Tmi

For each model m, we first reduced the elements of Um to their corresponding throughflows, Tmi, to the greatest extent possible using
ubstitutions within Symbolic Matlab. However, this program does not appear to carry out complex substitutions, as this approach failed to
dentify many Tmi that could be identified and computed by hand. Thus, algebraic substitution of the elements of Um with the corresponding
mi was largely carried out by hand, with intermittent use of Symbolic Matlab to confirm that parts of a given matrix element could be
urther simplified as had been achieved without computational software. Software that guarantees decompositions to unique, minimal-
ariable throughflow sets is still in need of development. Truly unique solutions are not possible for models in which one or more Tmi is a
ubset of another, leaving the most elegant algebraic formulation of Um as the one which employs the fewest total variables. We define any
odel m for which the elements of Um could be completely reduced to algebraic combinations of throughflows as throughflow reducible.

ach model for which at least one element of the corresponding Um seemed not to be completely reduced in this way was further analyzed
sing a commutative algebraic approach to demonstrate whether or not the entries of that Um could be written as algebraic combinations
f its Tmi. If the simplified algebraic results were supported by this second method, we considered the model throughflow nonreducible.

. Calculation

.1. Flow and throughflow matrices for algebraic models

For Model 1, the flow matrix F1 and throughflow matrix T1 are described as follows:

F1 =
[

0 0

b 0

]
; T1 =

[
a + b

b

]
. (1)

The corresponding matrices for Model 2 are:

F2 =
[

0 b

b + c 0

]
; T2 =

[
a + b + c

b + c

]
. (2)

The remaining models form 3 × 3 Fm matrices and 3 × 1 Tm matrices:

F3 =

⎡
⎣ 0 0 0

b + c 0 0

0 c 0

⎤
⎦ , T3 =

⎡
⎣ a + b + c

b + c

c

⎤
⎦ for the three-compartment chain; (3)

F4 =

⎡
⎣ 0 0 0

b 0 0

0 0 0

⎤
⎦ , T4 =

⎡
⎣ a + b + c

b

c

⎤
⎦ for the resource competition model; (4)

F5 =

⎡
⎣ 0 b d

0 0 0

0 0 0

⎤
⎦ , T5 =

⎡
⎣ b + d

a + b

c + d

⎤
⎦ for the apparent competition model; (5)

F6 =

⎡
⎣ 0 0 0

c + d 0 0

b d 0

⎤
⎦ , T6 =

⎡
⎣ a + b + c + d

c + d

b + d

⎤
⎦ for the intraguild predation model; (6)

F7 =

⎡
⎣ 0 0 b

b + c + d 0 0

0 b + d 0

⎤
⎦ , T7 =

⎡
⎣ a + b + c + d

b + c + d

b + d

⎤
⎦ for the three-compartment cycle; (7)
F8 =

⎡
⎣ 0 0 b + c

c + d + f 0 0

0 b + c + f + g 0

⎤
⎦ , T8 =

⎡
⎣ a + b + c + d + f

b + c + d + e + f + g

b + c + f + g

⎤
⎦ for the two-input cycle. (8)



3

j

3

A
t

L.K. Tuominen et al. / Ecological Modelling 293 (2014) 187–201 191

Finally, the three-compartment cycle with reversed two-compartment cycle corresponds to:

F9 =

⎡
⎣ 0 0 b + c + g

b + d + e + g 0 0

c = f + g b + e 0

⎤
⎦ ; T9 =

⎡
⎣ a + b + c + d + e + f + g

b + d + e + g

b + c + e + f + g

⎤
⎦ . (9)

.2. Direct utility matrices

As previously stated, the Dm matrices consist of elements dmij = (fmij − fmji)/Tmi, where m denotes the model, i indicates matrix row, and
indicates matrix column. Based on the Fm and Tm described in Section 3.1, we find that:

D1 =
[

0 −b/(a + b)

1 0

]
; (10)

D2 =
[

0 −c/(a + b + c)

c/(b + c) 0

]
; (11)

D3 =

⎡
⎣ 0 −(b + c)/(a + b + c) 0

1 0 −c/(b + c)

0 1 0

⎤
⎦ ; (12)

D4 =

⎡
⎣ 0 −b/(a + b + c) −c/(a + b + c)

1 0 0

1 0 0

⎤
⎦ ; (13)

D5 =

⎡
⎣ 0 b/(b + d) d/(b + d)

−b/(a + b) 0 0

−d(c + d) 0 0

⎤
⎦ ; (14)

D6 =

⎡
⎣ 0 −(c + d)/(a + b + c + d) −b/(a + b + c + d)

1 0 −d/(c + d)

b/(b + d) d/(b + d) 0

⎤
⎦ ; (15)

D7 =

⎡
⎣ 0 −(b + c + d) b/(a + b + c + d)

1 0 −(b + d)/(b + c + d)

−b/(b + d) 1 0

⎤
⎦ . (16)

Recalling from Eq. (8) that T82 = b + c + d + e + f + g, we have for Model 8:

D8 =

⎡
⎣ 0 −(c + d + f )/(a + b + c + d + f ) (b + c)/(a + b + c + d + f )

(c + d + f )/T82 0 −(b + c + f + g)/T82

−(b + c)/(b + c + f + g) 1 0

⎤
⎦ (17)

Finally, recalling from Eq. (9) that T91 = a + b + c + d + e + f + g, we have for Model 9:

D9 =

⎡
⎣ 0 −(b + d + e + g)/T91 (b − f )/T91

1 0 −(b + e)/(b + d + e + g)

−(b − f )/(b + c + e + f + g) (b + e)/(b + c + e + f + g) 0

⎤
⎦ . (18)

.3. Integral utility matrices

The Um matrices are calculated as (In − Dm)–1, where In is the n × n identity matrix, n = 2 when m = 1 or 2, n = 3 when m is any of 3–9, and
–1 is the inverse matrix of A, such that AA–1 = I. Thus, based on the Dm from Section 3.2, we can calculate both flow-based and simplified,

hroughflow-based forms of Um:
U1 = 1
a + 2b

[
a + b −b

a + b a + b

]
= 1

T11 + T12

[
T11 −T12

T11 T11

]
; (19)

U2 = 1
(a + b + c)(b + c) + c2

[
(a + b + c)(b + c) −c(b + c)

c(a + b + c) (a + b + c)(b + c)

]
= 1

T21T22 + c2

[
T21T22 −cT22

cT21 T21T22

]
; (20)
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U3 = 1

(b + c)2 + (a + b + c)(b + 2c)

⎡
⎢⎣

(a + b + c)(b + 2c) −(b + c)2 c(b + c)

(a + b + c)(b + c) (a + b + c)(b + c) −c(a + b + c)

(a + b + c)(b + c) (a + b + c)(b + c) (b + c)(a + 2b + 2c)

⎤
⎥⎦

= 1

T2
32 + T31(T32 + T33)

⎡
⎢⎣

T31(T32 + T33) −T2
32 T32T33

T31T32 T31T32 −T31T32

T31T32 T31T32 T32(T31 + T32)

⎤
⎥⎦ ; (21)

U4 = 1
a + 2b + 2c

⎡
⎣ a + b + c −b −c

a + b + c a + b + 2c −c

a + b + c −b a + 2b + c

⎤
⎦ = 1

T41 + T42 + T43

⎡
⎢⎣

T41 T41 −T43

T41 T41 + T43 −T43

T41 −T42 T41 + T42

⎤
⎥⎦ ; (22)

U5 = 1
(b + d)(a + b)(c + d) + d2(a + b) + b2(c + d)

⎡
⎢⎣

(b + d)(a + b)(c + d) b(a + b)(c + d) d(a + b)(c + d)

−b(b + d)(c + d) (a + b)
(

(b + d)(c + d) + d2
)

−bd(c + d)

−d(b + d)(a + b) −bd(a + b) (c + d)((b + d)(a + b) + b2)

⎤
⎥⎦

= 1
T51T52T + d2T52 + b2T53

⎡
⎢⎣

T51T52T53 bT52T53 dT52T53

−bT51T53 T52(T51 + T53 + d2) −bdT53

−dT51T52 −bdT52 T53(T51 + T52 + b2)

⎤
⎥⎦

′

(23)

U6 = 1

(a + b + c + d)(c + d)(b + d)(c + d)2 + (b + d) + d2(a + b + c + d) + b2(c + d)

×

⎡
⎢⎣

(a + b + c + d)((c + d)(b + d) + d2) −(c + d)((c + d)(b + d) + bd) (c + d)(b + d)(b − d)

(a + b + c + d)((c + d)(b + d) − bd) (c + d)((a + b + c + d)(b + d) + b2) −(b + d)((c + d)(b + d) + d(a + b))

(a + b + c + d)(c + d)(b + d) (c + d)(d(a + b + c + d) − b(c + d)) (c + d)(b + d)(a + b + 2c + 2d)

⎤
⎥⎦

= 1

⎡
⎢ T61(T62T63 + d2) −T62(T62T63 + bd) T62T63(d − b)

T (T T − bd) T (T T + b2) −T (T T + d(T − T ))

⎤
⎥

; (24)

T61T62T63 + T2

62T63 + d2T61 + b2T62
⎣ 61 62 63 62 61 62 63 62 63 61 62

T61T62T63 T62(dT61 − bT62) T62T63 + (T61 − T62)

⎦

U7 = 1

(b + d)(a + b + c + d)(b + c + d) + (b + c + d)2(b + d) + (a + b + c + d)(b + d)2 + b2(b + c + d)

×

⎡
⎣ (a + b + c + d)(b + d)(2b + c + 2d) −(b + c + d)(b + d)(c + d) (b + c + d)(b + d)(2b + d)

(a + b + c + d)(b + d)(2b + c + 2d) (b + c + d)((a + b + c + d)(b + d) + b2) (b + d)((a + b + c + d)(b + d) − b(b + c + d))

d(a + b + c + d)(b + c + d) (b + c + d)((a + b + c + d)(b + d) + b(b + c + d)) (b + c + d)(b + d)(a + 2b + 2c + 2d)

⎤
⎦

= 1

T73(T71T72 + T2
72 + T71T73) + b2T72

⎡
⎣ T71T73(T72 + T73) −T72T73(T72 − b) T72T73(T73 + b)

T71T73(T72 + b) T72(T71T73 + b2) −T73(T71T73 − bT72)

T71T72(T73 − b) T72(T71T73 + bT72) T72T73(T71 + T72)

⎤
⎦ ; (25)
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U8 = 1

(b + c + f + g)
(

(a + b + c + d + f ) (b + c + d + e + f + g) + (c + d + f )2
)

+ (b + c + d + e + f + g)
(

(a + b + c + d + f ) (b + c + f + g) + (b + c)2
)

⎡
⎣ u811 u812 u813

u821 u822 u823

u831 u832 u833

⎤
⎦ , where (26a)

⎡
⎢⎣

u811

u821

u831

⎤
⎥⎦ =

⎡
⎣ (a + b + c + d + f ) (b + c + f + g) (2b + 2c + d + e + 2f + 2g)

(a + b + c + d + f ) (b + c + f + g) (b + 2c + d + f )

(a + b + c + d + f ) ((b + c + f + g) (c + d + f ) − (2b + 2c + d + e + f + g))

⎤
⎦ , (26b)

⎡
⎢⎣

u821

u822

u823

⎤
⎥⎦ =

⎡
⎢⎣

(b + c + d + e + f + g) (b + c + f + g) (−b + d + f )

(b + c + d + e + f + g)
(

(a + b + c + d + f ) (b + c + f + g) + (b + c)2)
(b + c + d + e + f + g) ((a + b + c + d + f ) (b + c + f + g) + (b + c) (c + d + f ))

⎤
⎥⎦ , and (26c)

⎡
⎢⎣

u831

u832

u833

⎤
⎥⎦ =

⎡
⎣ (b + c + f + g) ((b + c + f + g) (c + d + f )) + (b + c) (b + c + d + e + f + g)

− (b + c + f + g) ((a + b + c + d + f ) (b + c + f + g) − (b + c) (c + d + f ))

(b + c + f + g) ((a + b + c + d + f ) (b + c + d + e + f + g) + (c + d + f )2)

⎤
⎦ . (26d)

U8 = 1

T83(T81T83 + (T81 − (a + b))2) + T82(T81T83 + (b + c))

×

⎡
⎢⎣

T81T83(T82 + T83) T82T83((T81 − (a + b)) − (b + c)) T83(T83(T81 − (a + b)) + T82(b + c))

T81T83((T81 − (a + b)) + (b + c)) T82(T81T83 + (b + c)2) −T83(T81T83 − (T81 − (a + b))(b + c))

T81(T83(T81 − (a + b)) − T82(b + c)) T82(T81T83 + (b + c)(T81 − (a + b))) T83(T81T82 + (T82 − (a + b))2)

⎤
⎥⎦ . (27)

U9 = 1

(a + b + c + d + e + f + g) (b + d + e + g) (b + c + e + f + g) + (b + d + e + g)2 (b + c + e + f + g) + (a + b + c + d + e + f + g) (b + e)2 + (b + d + e + g)(b − f )2⎡
⎣ u911 u912 u913

u921 u922 u923

u931 u932 u933

⎤
⎦ , where (28a)

⎡
⎢⎣

u911

u921

u931

⎤
⎥⎦ =

⎡
⎢⎣ (a + b + c + d + e + f + g) ((b + d + e + g) (b + c + e + f + g) + (b + e)2)

(a + b + c + d + e + f + g) ((b + d + e + g) (b + c + e + f + g) + (b + e)(b − f ))

(a + b + c + d + e + f + g) (b + d + e + g) (e + f )

⎤
⎥⎦ , (28b)

⎡
⎢⎣

u912

u922

u932

⎤
⎥⎦ =

⎡
⎢⎣

– (b + d + e + g) ((b + d + e + g) (b + c + e + f + g) − (b + e)(b − f ))

(b + d + e + g) ((a + b + c + d + e + f + g) (b + c + e + f + g) + (b − f )2)

(b + d + e + g) ((a + b + c + d + e + f + g) (b + e) + (b + d + e + g) (b − f ))

⎤
⎥⎦ , and (28c)

⎡
⎢⎣

u913

u923

u933

⎤
⎥⎦ =

⎡
⎣ (b + d + e + g) (b + c + e + f + g) (2b + e − f )

− (b + c + e + f + g) ((a + b + c + d + e + f + g) (b + e) − (b + d + e + g) (b − f ))

(b + d + e + g) (b + c + e + f + g) (a + 2b + c + 2d + 2e + f + 2g)

⎤
⎦ (28d)

U9 = 1

T91T92T93 + T2
92T93 + T91(b + e)2 + T92(b − f )2

⎡
T91(T92T93 + (b + e)2) −T92(T92T93 − (b + e)(b − f )) T92T93((b + e) + (b − f ))

⎤

× ⎢⎣ T91(T92T93 + (b + e)(b − f )) T92(T91T93 + (b − f )2) −T93(T91(b + e) − T92(b − f ))

T91T92(e + f ) T92(T91(b + e) + T92(b − f )) T92T93(T91 + T92)

⎥⎦ . (29)
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.4. Determination of throughflow nonreducibility

The initial calculations in Section 3.3 indicate that Models 2, 5, 6, 7, 8, and 9 may not be throughflow reducible. Considering each result
s an ideal membership problem may provide further insight as to the throughflow reducibility of Um for these models. In the following
roofs, the graded lexicographical order (grlex) is used for the ordering on the polynomial rings. First, given the result for U2, let I2 be the

deal generated by entries of T2, namely a + b + c and b + c (Eq. (28)), over C[a, b, c]. The corresponding matrix for a + b + c and b + c is:[
1 1 1

0 1 1

]
(30)

Based on an observation given in Section 5.5 of Becker and Weispfenning (1993), the row reduced echelon form of this matrix:[
1 0 0

0 1 1

]
(31)

ives a corresponding Groeber basis for I2 as G2 = {a, b + c}. Alternatively, we can employ computer software such as Mathematica to get
he same Groebner basis. By Corollary 2 in Section 2.6 of Cox et al. (2007), division of any polynomial in I2 by G2 must be zero. However, by
he division algorithm over C[a, b, c] described in Section 2.3 of Cox et al. (2007), the remainder of the division on c2 by G2 is c2, not zero.
ence, c2, a term that is found in the denominator of the scalar part of U2, is not in I2. This proves that not all entries of U2 can be written
s algebraic combinations of T21 and T22; thus U2 is not throughflow reducible.

Next, consider the matrix U5. Let I5 be the ideal generated by b + d, a + b, and c + d over C[a, b, c, d]. By the same procedure applied above
Becker and Weispfenning, 1993), G5 = {a–d, b + d, c + d} is a Groebner basis for I5. Further, according to the division algorithm (Cox et al.,
007), the remainder of the division of d2 by G5 is d2. Thus, d2, which is found in the denominator of the scalar part of U5, is not in I5 by
orollary 2 of Section 2.6 of Cox et al. (2007); thus, U5 is not throughflow reducible.

The proof for matrix U6 is exactly similar to the U5 case. Let I6 be the ideal generated by a + b + c + d, c + d, and b + d over C[a, b, c, d].
gain, by the same procedure applied in former case, G6 = {a–d, b + d, c + d} is a Groebner basis for I6. Then the division algorithm again

mplies that the remainder of the division of d2, a term found in the denominator of the scalar part of U6, by G6 is d2. Thus, d2 is not in I6
y Corollary 2 of Section 2.6 in Cox et al. (2007). Hence U6 is also not throughflow reducible.

Now, considering the matrix U7, let I7 be the ideal generated by a + b + c + d, b + c + d, and b + d over C[a, b, c, d]. Then, G7 = {a, b + d, c} is
Groebner basis for I7 according to the same method used previously. The remainder of the division of b, a term found in over half of the
ntries of U7, by G7 is −d. Therefore, b is not in I7 by Corollary 2 of Section 2.6 in Cox et al. (2007), and U7 is not throughflow reducible.

We can consider the matrix U8 next. Let I8 be the ideal generated by a + b + c + d + f, b + c + d + e + f + g, and b + c + f + g overC[a, b, c, d, e, f, g].
ow, G8 = {a − e − g, b + c + f, d + e} is a Groebner basis for I8. By the division algorithm noted previously, the remainder of the division of
+ b, which is found in the denominator of the scalar part of U8, by G8 is −c + e − f + g. Hence by Corollary 2 of Section 2.6 in Cox et al. (2007),
8 is not throughflow reducible.

Finally, given the matrix U9, let I9 be the ideal generated by a + b + c + d + e + f + g, b + d + e + g, and b + c + e + f + g over C[a, b, c, d, e, f, g]. By
he same procedure we applied previously (Becker and Weispfenning, 1993), G9 = {a + d, b + d + e + g, c − d + f} is a Groebner basis for I9. The
emainder of the division of e + f, which is found in at least one of the entries of U9, by G9 is e + f by the division algorithm (Cox et al., 2007).
hus, by Corollary 2 of Section 2.6 in Cox et al. (2007), U9 is not throughflow reducible. In summary, none of the Um for m = 2, 5, 6, 7, 8, and
are throughflow reducible.

. Results and discussion

.1. Throughflow reducibility of Um requires simple input environs

We define here as throughflow reducible any NEA matrix for which all elements can be described using only algebraic combinations of
he throughflows from the ecological network used to derive that matrix. As seen in Section 3.3, the integral utility matrices U1, U3, and
4 are all throughflow reducible. Algebraic descriptions of the six remaining Um appeared to be not throughflow reducible, in that each
atrix required the inclusion of at least one individual flow component. Division of at least one flow component term found in Um by a
roebner basis Gm, for m = 2, 5, 6, 7, 8 and 9, always produced a remainder, indicating that these Um were not throughflow reducible.

Models 2 and 7, both representing simple cycles with one input to the network, each required a single flow component in combination
ith throughflows to describe their respective Um. Models 5 and 6, representing apparent competition and intraguild predation, respec-

ively, required two flow components and the throughflows to describe U5 and U6. Finally, Models 8 and 9, the two-input cycle and the
hree-compartment/two-compartment cycle combination, respectively, each required three flow components beyond the throughflows
o describe their respective Um. In Models 5, 6, and 7, the non-reducible flow components were equivalent to full internal flows found
ithin those models. However, this was not the case for Models 2, 8, and 9, indicating that, at least with respect to integral utility, the use

f flow components to examine throughflow non-reducibility is more parsimonious than using the “complete” flows fij.
Interestingly, the topological characteristics of these nine models correlate with the throughflow reducibility of their corresponding

m. The three throughflow reducible models (Models 1, 3, and 4) each exhibit the simplest possible network transactions. Recall that input
nd output denote entering and exiting boundary flows into compartments originating and terminating, respectively, outside the defined
ystem. Let inflow and outflow denote incoming and outgoing flows from and to, respectively, other interior compartments. The throughflow
educible Models 1, 3, and 4, then, contain only compartments that receive either a single input or single inflow, while partitioning
he incoming material among an output and zero to two outflows. In contrast, Models 2, 7, and 8 each exhibit an input and inflow for

ompartment 1, and Model 8 also has an input and inflow into Compartment 2. Models 5 and 6 exhibit two inflows to Compartment 1 and
ompartment 3, respectively. In Model 9, Compartment 1 has both an input and inflow, and Compartment 3 exhibits two inflows. Thus,
hroughflow reducibility of Um appears to relate directly to the type of input environs found in Model m, and more specifically, the level of
omplexity for input environs of path length one. Patten (1981) and Patten and Auble (1980, 1981) have previously described environs as
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xtended niches or superniches, with environs of path length one in the inflow or outflow direction more specifically described as ecological
nput niches or output niches, respectively. The exclusive presence of simple (i.e., unpartitioned) input niches therefore appears to generate
hroughflow reducibility in Um of dissipative ecological network models, while more complex ones require the inclusion of specific flows.

That the topology of input niches influences the throughflow reducibility of the corresponding Um leads to the question of whether output
iche topology may also influence throughflow reducibility. In this case, the conditions must be considered from a holistic perspective rather
han on output niches of individual compartments. In particular, both throughflow reducible and non-reducible Um are seen for models
n which the compartments produce either one output only, or one output and one or more outflows; e.g., Models 3 and 5. The presence
f a threshold number of outflows within a model, or high network connectivity, appears to be sufficient for throughflow nonreducibility,
s n-compartment models exhibiting n or more total outflows were not throughflow reducible. This was not a necessary condition for
onreducibility, however, as Model 5 has n − 1 outflows for n = 3.

.2. Parametrically-determined qualitative relations between compartments

The current work builds directly on that of Patten and Whipple (2007) and Lobanova et al. (2009), and indirectly on other work (Fath,
007; Fath and Patten, 1998) in that the nine models for which Um was calculated can be identified as having topologically-determined or
arametrically-determined ecological relations, described by sign(Um). To reiterate, topologically-determined relations are those depend-

ng only on the structure of the model, while parametrically-determined relations require the consideration of flow values. Since internal
ows are assumed to be greater than zero (i.e., allowing any fij = 0 generates a different topology than that of the model under consid-
ration), all throughflows and flow variables are also greater than zero for the Dm and Um calculated here. Thus, both two-compartment
odels have topologically-determined relations of:

sign(Un) =
[

+ −
+ +

]
,

here n = 1 or 2. The results for Model 1 are consistent with those of Fath (2007). The results for Model 2 are inconsistent with the conclusions
rawn by Patten and Whipple (2007), who suggested that cycling itself produces parametrically determined sign(U) when inputs were
resent. In the underlying analysis for that work, however, Model 2 was never explicitly examined; instead, a three-compartment cycle
kin to Model 7, with varying numbers and positions of inputs, was considered. Interestingly, this work identified the necessity of an input
or parametric determination, as the three-compartment cycle without inputs had a topologically determined sign(U) (Patten and Whipple,
007). This highlights the importance of considering inputs as well as internal flows in any comprehensive analysis of sign(U), and in the
urrent work, we consider different numbers of inputs as indicating different model topologies.

Next, Models 3–5 all clearly have topologically-determined relations, consistent with previous work (Fath, 2007; Fath and Patten, 1998;
obanova et al., 2009; Patten and Whipple, 2007):

sign(U3) =

⎡
⎣+ − +

+ + −
+ + +

⎤
⎦ , sign(U4) =

⎡
⎣+ − −

+ + −
+ − +

⎤
⎦ , and sign(U5) =

⎡
⎣+ + +

− + −
− − +

⎤
⎦ .

The four remaining models require additional consideration, as multiple matrix elements in the corresponding Um contain individual
ows subtracted individually or multiplied with other flows or throughflows. It is possible that such elements may vary from negative to
ositive based on these flows’ values. For Model 6, the integral utility is represented as in Eq. (24):

1

T61T62T63 + T2
62T63 + d2T61 + b2T62

⎡
⎢⎣

T61(T62T63 + d2) −T62(T62T63 + bd) T62T63(d − b)

T61(T62T63 − bd) T62(T61T63 + b2) −T63(T62T63 + d(T61 − T62))

T61T62T63 T62(dT61 − bT62) T62T63(T61 + T62)

⎤
⎥⎦ .

Recognizing that the scalar is positive, we can readily see that over half the elements in U6 are topologically determined:

sign(U6) =

⎡
⎣+ − ?

? + ?

+ ? +

⎤
⎦ .

The remaining four elements depend on the signs of:

d − b, T61 − T62, T62T63 − bd, and dT61 − bT62.

First, d − b may be negative if b > d, zero if b = d, or positive if b < d. This implies that the element (1, 3) is parametrically determined by
he relative values of b and d. Next, given that T61 = a + b + c + d and T62 = c + d, we know that T61 − T62 = a + b > 0. This, in turn, implies that
lement (2, 3) is negative, since the element includes a multiplier of −T63. Third, since T63 = b + d, we also know that:

T62T63 − bd = bc + cd + bd + d2 − bd = bc + cd + d2 > 0.

Thus, the element (2, 1) is positive. Finally,
dT61 − bT62 = ad + bd + cd + d2 − bc − bd = ad + cd + d2 − bc.

This term, and therefore element (3, 2), may be negative, zero, or positive, depending on the relative magnitudes of the flow variables.
n particular, it will be positive whenever d ≥ b, but it may be positive, negative, or zero based on the values of a and c when d < b. Thus,
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wo elements of U6 are parametrically determined, one by the relative magnitude of two flows, and the other by the relative magnitudes
f four flows:

sign(U6) =

⎡
⎣+ − (b, d)?

+ + −
+ (a, b, c, d)? +

⎤
⎦ ,

nd in particular,

sign(U6) =

⎡
⎣+ − +

+ + −
+ + +

⎤
⎦ for b < d,

⎡
⎣+ − 0

+ + −
+ + +

⎤
⎦ , for b = d, and

⎡
⎣+ − −

+ + −
+ (a, b, c, d)? +

⎤
⎦ for b > d.

This result is broadly consistent with previous findings (Lobanova et al., 2009; Patten and Whipple, 2007), but differs somewhat from
revious considerations of the possible states of the parametrically determined elements, as Lobanova et al. (2009) did not explicitly include
he possibility of null-signed elements.

For Model 7, the integral network utility matrix U7 is represented as in Eq. (25):

1

T73(T71T72 + T2
72T71T73) + b2T72

⎡
⎢⎣

T71T73(T72 + T73) −T72T73(T72 − b) T72T73(T73 + b)

T71T73(T72 + b) T72(T71T73 + b2) −T73(T71T73 − bT72)

T71T72(T73 − b) T71(T71T73 + bT72) T72T73(T71 + T72)

⎤
⎥⎦ .

Here, the scalar is again clearly positive, and we have:

sign(U7) =

⎡
⎣+ ? +

+ + ?

? + +

⎤
⎦ ,

here the three unknown signs depend on the signs of:

T72 − b, T71T73 − bT72, and T73 − b.

By simple substitution, we know that T72 − b = c + d and that T73 − b = d, so the corresponding matrix elements (1, 2) and (3, 1) have
egative and positive topologically-determined signs, respectively. Finally,

T71T73 − bT72 = (a + b + c + d)(b + d) − b2 − bc − bd = ab + ad + bd + cd + d2,

hich is always positive. Since the remainder of element (2, 3) consists of a negatively-signed throughflow, the element overall is negative.
hus, sign(U7) is topologically determined:

sign(U7) =

⎡
⎣+ − +

+ + −
+ + +

⎤
⎦ .

This topological determination of sign(U7) is consistent with the findings of Lobanova et al. (2009), but may be considered to differ
rom the conclusions of Patten and Whipple (2007), who indicated that simple cycles could be subject to exogenous parametric determi-
ation. It is important to note, however, that the description of exogenous parametric determination previously described includes the
ossibility of differing locations and numbers of inputs, which inherently involves changing the overall network’s connectedness with the
xternal environment. Thus, the results for sign(U2) and sign(U7) suggest that it may not be cycling per se which gives rise to parametric
etermination, but rather changes in the topology of inputs.

Model 8 differs from Model 7 only in that it is more strongly connected to the external environment due to the presence of an additional
nput. Further insights can therefore be gained on the interpretation of exogenous parametric determination by examining sign(U8). Next,
he integral utility matrix for Model 8 was calculated as in Eq. (26):

U8 = 1

T83(T81T83 + (T81 − (a + b))2) + T82(T81T83 + (b + c)2)

×

⎡
⎢⎣

T81T83(T82 + T83) T82T83((T81 − (a + b)) − (b + c)) T83(T83(T81 − (a + b)) + T82(b + c))

T81T83((T81 − (a + b)) + (b + c)) T82(T81T83 + (b + c)2) −T83(T81T83 − (T81 − (a + b))(b + c)))

T81(T83(T81 − (a + b)) − T82(b + c)) T82(T81T83 + (b + c)(T81 − (a b))) T83(T81T82 + (T82 − (a + b))2)

⎤
⎥⎦ .

We can readily see that the scalar for U8 is always positive. Furthermore, from T8 (Eq. (8)), we know that T81 = a + b + c + d + f. This implies
hat T81 − (a + b) = c + d + f, so that we have:⎡ ⎤
sign(U8) = ⎣+ ? +
+ + ?

? + +
⎦ ,
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here the three unknown signs depend on the signs of:

(T81 − (a + b)) − (b + c), T81T83 − (T81 − (a + b))(b + c), and (T81 − (a + b)) − T82(b + c).

Based on substitution of T81, we know that:

T81 − (a + b) − (b + c) = c + d + f − b − c = d + f − b,

hich may be positive, negative, or zero, depending on the values of b, d, and f. In particular, both this portion and the overall value of (1,
) will be positive when d + f > b, zero when d + f = b, and negative when d + f < b. Next, given that T83 = b + c + f + g, we know that:

T81T83 − (T81 − (a + b))(b + c) = (a + b + c + d + f )(b + c + f + g) − (c + d + f )(b + c) = ab + ac + af + ag + b2 + bc + bf + bg +
cf + cg + df + dg + f 2 + fg,

hich must always be positive. The corresponding matrix element (2, 3) is therefore topologically determined as negative based on its
eading sign. Finally, based on substitution of T82, we also have:

(T81 − (a + b)) − T82(b + c) = c + d + f − (b + c + d + e + f + g)(b + c) = (1 − (b + c))(c + d + f ) − (b + c)(b + e + g),

hich may be positive, negative, or zero based on the values of flows b through g. In particular, when we have b + c ≥ 1, the corresponding
lement (3, 1) will be negative; when b + c < 1, the corresponding matrix element to be positive, negative, or zero, depending on the values
f all flows other than a.

In summary, the signs of two elements in U8 are parametrically determined:

sign(U8) =

⎡
⎣ + (b, d, f )? +

+ + −
(b, c, d, e, f, g)? + +

⎤
⎦ .

All but one flow is incorporated into the parametric determinations overall in Model 8. However, if we know that d + f > b, d + f = b, or
+ f < b, then we have:

sign(U8) =

⎡
⎣ + + +

+ + −
(b, c, d, e, f, g)? + +

⎤
⎦ , sign(U8) =

⎡
⎣ + 0 +

+ + −
(b, c, d, e, f, g)? + +

⎤
⎦ , or sign(U8) =

⎡
⎣ + − +

+ + −
(b, c, d, e, f, g)? + +

⎤
⎦ ,

respectively.

Similarly, if we know that b + c ≥ 1, we have:

sign(U8) =

⎡
⎣+ (b, d, f )? +

+ + −
− + +

⎤
⎦ .

Overall, this parametric determination of sign(U8) contrasts with the topological determination of sign(U7). That the determination of
cological relations differs between these two models, which both contain a single three-compartment cycle, further supports the idea
hat cycling itself is not the topological property which confers parametric determination, as initially suggested by Patten and Whipple
2007). However, the parametric determination of sign(U8) can be interpreted to support the previous concept of exogenous parametric
etermination (Patten and Whipple, 2007), insofar as the number of inputs (one for Model 7, two for Model 8) clearly influences elements
1, 2) and (3, 1) for the cycling models’ respective sign(Um). However, a broader interpretation of exogenous parametric determination,
n which all variables associated with a model’s inputs influence parametric determination of sign(Um), does not appear to be valid for
hese cases, as a is not involved in parametric determination of sign(U8). Thus, since the number of inputs differentially influences the
etermination types of Models 7 and 8, we suggest that the concept of exogenous determination be restricted to comparisons between
odels differing in their input topologies.
Finally, the integral utility matrix for Model 9 was described in Eq. (27) as:

U9 = 1

T91T92T93 + T2
92T93 + T91(b + e)2 + T92(b − f )2

×

⎡
⎢⎣

T91(T92T93 + (b + e)2) −T92(T92T93 − (b + e)(b − f )) T92T93((b + e) + (b − f ))

T91(T92T93 + (b + e)(b − f )) T92(T91T93 + (b − f )2) −T93(T91(b + e) − T92(b − f ))

T91T92(e + f ) T92(T91(b + e) + T92(b − f )) T92T93(T91 + T92)

⎤
⎥⎦ .

The scalar for the matrix is guaranteed to be positive, because the one segment that introduces a potential negative value is squared.
iven this, we also know that:⎡ ⎤
sign(U9) = ⎣+ ? ?

? + ?

+ ? +
⎦ ,



1

w

w
N

w
r

w

a

o
i

c

w
o
t

A
f
s
g
t
a
w
i
(
s

i
o
o
A
o
L
w

98 L.K. Tuominen et al. / Ecological Modelling 293 (2014) 187–201

here the five unknown signs depend on the signs of:

T92T93 − (b + e)(b − f ), (b + e) + (b − f ), T92T93 + (b + e)(b − f ), T91(b + e) − T92(b − f ), and T91(b + e) + T92(b − f ).

First, based on substitution of T92 and T93 in accordance with Eq. (9), we know that:

T92T93 − (b + e)(b − f ) = (b + d + e + g)(b + c + e + f + g) − (b2 + be − bf − ef ) = bc + bd + be + 2bf + 2bg + cd + ce + cg + de +
df + e2 + 2ef + 2eg + fg + g2,

hich must always be positive. This leaves the overall matrix element (1, 2) topologically determined as negative based on its leading sign.
ext, we have:

(b + e) + (b − f ) = 2b + e − f,

hich will be positive when 2b + e > f, zero when 2b + e = f, and negative when 2b + e < f. Thus, the corresponding element (1, 3) is paramet-
ically determined. Third, we have:

T92T93 + (b + e)(b − f ) = (b + d + e + g)(b + c + e + f + g) + b2 + be − bf − ef = 2b2 + bc + bd + 3be + 2bg + cd + ce + cg + de +
df + dg + e2 + 2eg + fg + g2,

hich, along with its corresponding element (2, 1), is topologically determined as positive. Next, the sign of (2, 3) depends on:

T91(b + e) − T92(b − f ) = (a + b + c + d + e + f + g)(b + e) − (b + d + e + g)(b − f ) = ab + bc + 2bf + ae + be + ce + de + e2 +
2ef + eg + df + fg.

This portion it is always positive; with a negative leading sign, the corresponding matrix element is therefore topologically determined
s negative. The last parameterization is:

T91(b + e) + T92(b − f ) = (a + b + c + d + e + f + g)(b + e) + (b + d + e + g)(b − f ) = ab + 2b2 + bc + 2bd + 3be + 2bg + ae +
ce + de + e2 + eg − df − fg = (b + e)(a + 2b + c + e) + (2b + e − f )(d + g).

If 2b + e ≥ f, this will be positive, along with the overall element (3, 2). If 2b + e < f, this and the overall element may be positive, negative,
r zero, based on the relative values of all flows in the model. To summarize, Model 9 produces two parametrically determined elements
n its relational matrix:

sign(U9) =

⎡
⎣+ − (b, e, f )?

+ + −
+ (a, b, c, d, e, f, g)? +

⎤
⎦ .

One of the parametrically determined elements depends on three flow values, while the other depends on all seven in the model. We
an also narrow down the outcomes based on the relationships among b, e, and f, so that:

sign(U9) =

⎡
⎣+ − +

+ + −
+ + +

⎤
⎦ , sign(U9) =

⎡
⎣+ − 0

+ + −
+ + +

⎤
⎦ , and sign(U9) =

⎡
⎣+ − −

+ + −
+ (a, b, c, d, e, f, g)? +

⎤
⎦

hen 2b + e > f, 2b + e = f, and 2b + e < f, respectively. The parametric determination of Model 9 contrasts with the structural determination
f Model 7, raising the possibility that the presence of multiple cycles does contribute to parametric determination of sign(Um), similarly
o the presence of multiple inputs. To our knowledge, such a topology has not previously been considered for analysis of Um or sign(Um).

Overall, it is evident that all models for which Um was throughflow reducible (i.e., Models 1, 3, and 4) exhibited topological determination.
lthough throughflow reducibility appears to be a sufficient condition for topological determination, it was not necessary; only models

or which Um was not throughflow reducible exhibited parametric determination in sign(Um), in particular Models 6, 8, and 9. However,
ign(U2), sign(U5), and sign(U7) were topologically determined. It is further noteworthy that, for all nine models examined here, the overall
reater presence of positive elements than negative or zero elements is topologically guaranteed, a finding that is described further in
he Janus Hypothesis (Patten, 2014). Although the number of parametrically determined elements in sign(Um) varied from zero to two,
t least five of the nine matrix elements are topologically determined as positive in each of the three-compartment models. This pattern
as consistent regardless of whether or not parametric determination arose from the overall model topology. This finding extends the

dentification of network mutualism in all possible three-compartment model topologies for a universally fixed transfer efficiency of gij = 0.1
Fath, 2007) and previous descriptions of network mutualism in particular model topologies (Fath, 2007; Lobanova et al., 2009) to include
ign(U) for models not previously considered in their generalized form.

An interesting pattern seen for models having parametrically determined elements in sign(Um) was the large number of flow components
nvolved in determining these elements. Particular parametrically determined matrix elements could be determined using small numbers
f components, e.g., (1, 3) in sign(U6). However, parametric determination of sign(U6) and sign(U9) as a whole did not allow the dismissal
f any components, and sign(U8) allowed the dismissal of only a, which made up part of the input and output for Compartment 1 therein.

lgebraically analyzing the flows involved in parametrically determining the sign of a given element in Um, also allows the identification
f conditions under which a model with numerical flows will generate positive, zero, or negative parametrically-determined elements.
obanova et al. (2009) previously carried out similar work in identifying possible values of sign(Um), although the approach for that work
as centered more strongly around individual flows rather than throughflows and flow components, as we have done here. We did not
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xhaustively carry out such work here due to the high number of flow components for some matrix elements, but we have attempted to
dentify restrictions on sign(Um) based on combinations of two or three components. In keeping with previous work, elements with signs
arametrically determined by n flows may ultimately have their boundary conditions (i.e., conditions under which the sign of the element

s zero) graphed in n-dimensional space, somewhat similar to the plot in Lobanova et al. (2009) of Model 6s possible goal functions.

.3. Ecological interpretation of integral network utility from a throughflow perspective

The above work demonstrates the ways in which a throughflow perspective can assist in identifying topological vs. parametric deter-
ination of overall relational types between compartments within an ecosystem. First, throughflow reducibility appears to be a sufficient

ondition for topological determination of sign(Um). Second, that individual throughflows are invariably positive when defined as sums of
lgebraic, positive inputs and inflows (or outputs and outflows) considerably facilitates the analysis of Um element signs and the identifi-
ation of critical flows that may change the sign of a parametrically-determined flow. The positive nature of throughflows also contributes
o overall positive relationships emergent in transactional (energy–matter storage and flow) networks, as reflected in two Network Envi-
on Analysis properties: network synergism (U matrix |+benefit/−cost| ratio > 1; Fath and Patten, 1998; Patten, 1991, 1992) and network
utualism (U matrix +/– sign ratio > 1; Patten, 1991, 1992).

The throughflow perspective helps to reveal a mathematical basis for network synergism within particular model topologies that, to
ur knowledge, has not previously been shown. We begin by considering how relative measures of throughflow centrality within each of
ur nine models as recently described by Borrett (2013). Throughflow centrality is an indicator of a compartment’s network centrality and
efined as that compartment’s quantitative throughflow (Borrett, 2013). Among the models used in the current study, only two (Models
and 8) have any ambiguity about their relative throughflow centrality; in all other cases, Compartment 1 is both the lone compartment
ith an input and has the greatest throughflow centrality in the model. Consistent with Borrett’s empirically-supported hypothesis that
rimary producers, decomposers, and nonliving compartments tend to have the greatest throughflow centrality in ecosystems (Borrett,
013), inputs are often used to represent primary production or influx of organic matter (e.g., Dame and Patten, 1981), although it is
heoretically possible to generate a model in which the input is based on, for example, migration. While Models 5 and 8 are at least
artially indeterminate in the relative throughflow centrality values for their respective compartments, this is nevertheless associated
ith the presence of two inputs for each model.

Next, considering the relative values of Tmi within Um makes it possible to relate throughflow centrality to network synergism. As an
xample, consider Model 4, in which the first compartment has greater throughflow centrality than the second and third compartments:
41 > T42, T43. We also know that:

U4 = 1
T41 + T42 + T43

⎡
⎢⎣

T41 −T42 −T43

T41 T41 + T43 −T43

T41 −T42 T41 + T42

⎤
⎥⎦ .

Based on the relative throughflow centralities of each compartment, then, we can quantitatively rank the absolute values of each
lement (u4ij):

(2, 2)&(3, 3) > (1, 1) = (2, 1) = (3, 1) > |(1, 2)|, |(3, 2)|, |(1, 3)|, &|(2, 3)|.
Since the total number of positive elements is greater than the total number of negative elements, and since each negative element is

y definition smaller than the smallest of the positive elements, we know that:

(3,3)∑
i=1, j=1

u4ij > 0.

Thus, network synergism holds for all valid flow quantities of Model 4. Similar demonstrations can be carried out for at least Models 1–3
nd 5–7 (data not shown). Fath and Patten (1998) have previously demonstrated the generality of network synergism, so the current results,
hile not comprehensive, are both consistent with previous work and highlight the role of model-specific throughflows in generating
etwork synergism.

Finally, the throughflow perspective of network integral utility allows the identification of key transactional flows within the network
hat generate throughflow non-reducibility. This is particularly relevant to understanding the complexity of natural ecosystems and the
ays in which they differ from conventional designed systems. It may be possible to challenge the idea that “sustainability is unsustainable”

Patten, 2014, Section 6.1.8) by identifying particular ways in which we may use “dynamical systems principles to both minimize change and
atch human dynamics to global dynamics” (Patten, 2014, Section 6.1.9) or create human-designed systems that more closely approximate

atural ecosystems. Regarding the former, the “assembly-line” tradition of the industrial economic model is strongly associated with the
onstruction of simple input niches, a pattern that began within conventional manufacturing environments but was soon extended to
gricultural systems. While networks consisting only of simple input niches generate throughflow reducibility, and therefore are more
ractable both mathematically and conceptually, it is evident that even in three-compartment networks the number of possible throughflow
on-reducible models outweighs the number of throughflow reducible ones (see also Patten and Whipple, 2007). Furthermore, although
pecialist species are well known, it is common for heterotrophs to have complex input niches, thus producing ecological networks likely
o be nonreducible. The throughflow perspective allows us to move beyond the view of ecosystems as “irreducibly complex” by allowing
oth easier identification and quantification of “extra” non-throughflow components that arise in the associated U. This feature allows

s to quantitatively understand the nature of ecological complexity in particular systems. For example, the importance of the relative
alues of 2b + e and f in Model 9’s relations between Compartments 1 and 3 translates into a consideration of the relative strengths of two
ifferent pathways: one from the input to Compartment 1, flow to Compartment 3, and finally output (represented by f), and the other
rom Compartment 2 to Compartment 3 (b + e), which then bifurcates to output (e) and Compartment 1 (b) (Fig. 3). Such analyses may
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Fig. 3. Assessing Model 9 sustainability based on flow components b, e, and f. Depending on the relative values of f and 2b + e, the mutualism index of Model 9 may be
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ncreased up to 3.5 or decreased down to 1.25. Designing or altering systems to produce higher mutualism indices may be one approach to improve sustainability; here,
aintaining f < 2b + e would be the most preferred outcome.

ontribute to greater sustainability in human-designed or human-dominated systems by clarifying focal transactions for environmental
anagement and mitigation scenarios. This novel approach would benefit from further formalization beyond the scope of this paper, but

ike NEA-based ecological risk assessments (Chen et al., 2011) and NEA-based functional ecosystem assessments (Christian et al., 2009), it
epresents a new way in which systems ecology can be applied to prevent or mitigate negative environmental changes.

. Conclusions

Here, we have used a symbolic algebra approach to analyze integral utility matrices for nine small ecosystem models. In particular, the use
f algebraic sums of flow components allowed us to analyze nine Um at a finer scale than the use of “complete” flows fij allows. By reducing
he elements of Um for each model m to compartment throughflows to the greatest extent possible, we have identified model topologies
roducing throughflow reducible and non-reducible Um, linked throughflow reducibility to the presence of only simple input niches, and

dentified throughflow reducibility as a sufficient, but not necessary, condition for topological determination of sign(Um). The throughflow
erspective also facilitated the analysis of parametrically-determined elements within sign(Um) by allowing a focus on negatively-signed
r subtracted throughflow and flow components. We demonstrated that simple cycles can produce topologically-determined sign(Um),
lthough additional inputs to a cycle will generate parametric determination. Beyond this novel finding, our results are broadly consistent
ith previous work on network mutualism and synergism while focusing on specific model topologies to analyze the mathematical,

opology-specific basis for these phenomena more closely. For instance, we provided an example showing how comparisons of throughflow
entrality among compartments for a given model topology can help to reveal the quantitative basis of its network synergism. We note
nally that the throughflow perspective of integral network utility allows us to identify specific transactional flows that contribute to
cological complexity, helping to qualitatively distinguish between natural ecosystems and most human-designed systems.

The current work lays a foundation to further generalize two and three-compartment models. The development of a universal three-
ompartment model in particular, with algebraic inputs, flows, and outputs, is nontrivial and would allow the calculation of algebraic F,
, D, and U matrices for all possible network topologies by setting to zero any algebraic components lacking a positive value, rather than
dding new ones. The resulting matrices could be considered as systemic utility “building blocks” facilitating numerical or algebraic work
n applied or basic NEA and may be able to provide more general insights into the role of throughflow in integral network utility.
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