
Euclid's treatment of Pythagoras 
[Remember we are assuming the parallel postulate EFP now.] 

 Euclid did not use real numbers to measure lengths or areas.  Thus his statement of 
Pythagoras' theorem was one that did not mention numerical areas, in particular he did not say 
that a^2 + b^2 = c^2 as we do.  He had to say the square on the hypotenuse could be obtained 
from the two squares on the legs, by some process which would preserve area, if we had a notion 
of area.  The simplest such notion is having "congruent dissections".  I.e. two figures have 
congruent dissections if they can be constructed from congruent pieces, possibly in different 
arrangements. 
 
 More precisely, define a "figure" as a finite non overlapping union of triangles, where 
"non overlapping" means no point interior to one triangle is also interior to another triangle.  To 
save words we will say "sum" for "non overlapping union".  E.g., a parallelogram is the sum of 
two triangles having a diagonal of the parallelogram as a common side. 
 
 Define two figures P,Q to have "congruent dissections", if there exist triangles T1,...,Tn 
and S1,...,Sn, such that for every i, Si and Ti are congruent, and P is the non overlapping union of 
S1,...,Sn, while Q is the non overlapping union of T1,...,Tn.   
 
For example if we take a rectangle P, and cut it into two triangles by a diagonal, we can 
reassemble those two triangles to form a parallelogram Q.  Then P and Q have congruent 
dissections, since P is a sum of two triangle S1, S2, and Q is a sum of two triangles T1,T2, where 
S1 and T1 are congruent, and S2 and T2 are congruent.  In fact here all 4 triangles may be taken as 
congruent.  [compare picture on next page.] 
 
 However, this notion is not the easiest one in the world to work with, as it can be 
challenging to show that two figures actually do have congruent dissections. 



 
 
  An easier notion, apparently weaker, but actually always equivalent (after a lot of work), is the 
following one, of having "equal content". 
 
Define P,Q to have "equal content", if there exist figures R,S, so that R and S have congruent 
dissections, and such that the sums P+R, and Q+S, also have congruent dissections.  (It is not 
obvious, but it is true, than then P and Q themselves already have congruent dissections.) 
 
 We will assume without proof, at least until later, that both notions, having 
congruent dissections, and having equal content, are transitive, and hence define 
equivalence relations on figures. (See Hartshorne, pages 199, 201.) It can also be shown that 
every polygon is a figure, i.e. can be expressed as a sum of triangles (see e.g. Einar Hille, Analytic 
Function Theory, app. B, vol. 1.) 
 
Prop. 35 (Euclid) Parallelograms which are on the same base and "in the same parallels" [i.e. have 
collinear sides opposite the common base], are “equal”, [i.e. have equal content]. 
proof: Euclid's picture shows only one case, where the sides opposite the common base are 
disjoint, as below.  (This picture is reproduced in Hartshorne, p. 198. ex. 22.1.2, apparently 
without commenting that it is not the general case.) 

 
 We want to show parallelograms [abcd], and [aefd], have equal content.  We claim that 
adding the same triangle, <cxe>, to both of them, makes the resulting figures have congruent 
dissections. 
 
I.e. the sum of [abcd] and <cxe> can be dissected into triangles <bae> + <axd>.  While the sum of 
[aefd] and <cxe>, can be dissected into <cdf> + <axd>.  Since triangles <bae> and <cdf> are 



congruent, indeed figures [abcd] + <cxe>, and [aefd] + <cxe>, have congruent dissections.  Thus 
parallelograms [abcd] and [aefd] have equal content as claimed. 
 
This proof works as long as point e, is on or to the right of point c.  But we could also have the 
following picture: 

 
Now there is no point x as before.  But this case is easier than before, since triangles <abe> and 
<dcf> are congruent, so even without adding anything, parallelograms [abcd] and [aefd], have 
congruent dissections.  So in this case we have proved something stronger than equal content for 
the two parallelograms. 
 
Remark:  In fact the two parallelograms in the first case also have congruent dissections:  We can 
even reduce that case to the easier case. 

To show [abcd] and [aefd] have congruent dissections, it suffices by transitivity to find a 
parallelogram which has congruent dissections with both of these.  Look at the next picture. 



Parallelogram [aued] has a congruent dissection with [aefd] by the easy case since there is no 
point of intersection.  But we can do this again.  

I.e. here [avud] has a congruent dissection with [aued] hence with [aefd].  Now we are back in the 
easy case, so [avud] has a congruent dissection with [abcd].  By transitivity, [abcd] has a 
congruent dissection with [aefd]. 
Hence we have proved (assuming transitivity): 
Strong Prop 35: Parallelograms which are on the same base and "in the same parallels" have 
congruent dissections. 
 
Next we use Hartshorne's argument to strengthen Euclid's Prop. 37. 
Strong Prop. 37. Triangles which are on the same base and "in the same parallels" [i.e. whose 
vertices opposite the common base lie on a line parallel to the common base], have congruent 
dissections. 
 
Lemma: A line through the midpoint of one side of a triangle, and parallel to the base, meets the 
third side at its midpoint. 
proof:   



 
Assume x is the midpoint of ab, and xy is parallel to ac.  Claim y is the midpoint of bc.  Drop 
perpendiculars to form right triangles as follows: 

 
Triangles <axu> and <xbw> are congruent by hypotenuse angle since angles <xau and <bxw are 
equal by Z principle.  Hence sides bw and xu are equal.  By EFP all 4 angles of quadrilateral uxyv 
are 90, so sides xu and yv both equal bw. Triangles <bwy> and <yvc> are congruent by SAA, 
since angles wyb and vcy are equal by Z principle.   Thus segments (by) and (yc) are equal, so y 
is the midpoint of bc.  QED. 
Now back to Hartshorne's proof of Prop. 37: i.e. if L,M are parallel, 

 
then triangles <abc>, <adc>, have congruent dissections.  To see this draw a line K parallel to 
L,M through the midpoint of side (ab). 



Then 
applying the lemma to triangles <abc>, <abd>, and <adc>, it follows that K bisects all the 
segments (ab, (ad), (bc), and (dc).  Now construct parallelograms on the base (ac), with tops in K, 
as follows: 

Triangles <aux> and <buy> are congruent, as are <dvz> and <cvw>.  Hence triangle <abc> has a 
congruent dissection with parallelogram [axyc], and <adc> has a congruent dissection with 
parallelogram [azwc].  Those two parallelograms also have congruent dissections by Prop. 35, 
hence so do triangles <abc>, and <adc>.  QED Prop 37. 
 
Next we can give Euclid's proof of Pythagoras, and in a stronger form than he stated it, assuming 
as always, transitivity of the relation of having congruent dissections. 
 
Prop. 47 (Pythagoras).  If <abc> is a right triangle with hypotenuse (ab), then the sum of the 
squares A+B on the legs (ac) and (bc), has a congruent dissection with the square C on the 
hypotenuse (ab). 
proof:  Draw the squares on the various sides, and then drop a perpendicular from the vertex c 
(opposite the hypotenuse), onto the bottom edge of the square C on the hypotenuse, separating 
that square into two rectangles, C1 and C2.  Then we will show that rectangle C1 has a congruent 
dissection with the square B on the side opposite vertex b, and rectangle C2 has a congruent 
dissection with the square A opposite the vertex a.  Since sums of figures having congruent 
dissections obviously also have them, this will complete the proof.



 
We want to show first rectangle C1 has congruent dissection with square B.  To do this draw in 
two congruent triangles, <azb>, and <acy>.  

 
The triangles are congruent by SAS, since angles <zab and <cay both equal angle <cab plus a right 
angle, and the sides (ac) and (az) are sides of the same square, as are sides (ay) and (ab).  Now 
triangle <acy> has a congruent dissection with the triangle formed by half of rectangle C1. by 



Prop. 37, as does the triangle <azb> with half of square B.  Since doubles of figures with 
congruent dissections also have congruent dissections, C1 has a congruent dissection with B.  
Similarly rectangle C2 has congruent dissection with square A.  Adding, square C = C1+C2 has 
congruent dissection with the sum of squares A+B.  QED. 
 
The pictures below show A+B and C have equal content, since adding the same 4 congruent 
triangles to both figures gives the same result.  

 
 
The next picture from your hw shows more easily than Euclid’s argument that A+B and C also 
have congruent dissections, since the dark lines show how to cut 5 pieces from A and B, which 
can be reassembled to form C. 
 

 


