Ph.D Comprehensive Examination on Algebra Fall 2006

You have three hours to complete this exam. Please write your solutions in a clear and concise fashion.

- 1) Let B be a complex 7×7 matrix such that $B^4 = 0$. Up to similarity, list all possible Jordan canonical forms that B can have.
- 2) State the three Sylow theorems. Prove that there are no simple groups of order 20.
- 3) Classify all groups of order 10 up to isomorphism. Justify your answer.
- 4) Let F be a field and p(x) be a polynomial in F[x]. Show that the ideal (p(x)) in F[x] is maximal if and only if p(x) is irreducible over F.
- 5) Let k be a field and let the group $G = GL_m(k) \times GL_n(k)$ act on the set of $m \times n$ matrices, $M_{m,n}(k)$ as follows: $(A,B).X = AXB^{-1}$ where $A,B \in G$ and $X \in M_{m,n}(k)$. Exhibit with justification a subset S of $M_{m,n}(k)$ which contains precisely one and only one element of each orbit under this action.
- 6) Consider the polynomial $p(x) = x^4 5 \in \mathbb{Q}[x]$.
- a) Find the splitting field of p(x) over \mathbb{Q} .
- b) Compute the Galois group of p(x) over \mathbb{Q} .
- c) Are all subfields of the splitting field normal extensions over Q? Justify your answer.
- 7) Let R be a Noetherian ring. Prove that R[x] is also Noetherian.
- 8) Let M be a finitely generated module over a principal ideal domain R.
- a) Let M_t be the set of torsion elements of M. Show that M_t is a submodule of M.
- b) Show that M/M_t is torsion free. Is M/M_t a free module? Justify this by either stating a relevent theorem or providing a counterexample.
- c) Prove that $M \cong M_t \oplus F$ where F is a free module.