Algebra qualifying exam, Spring 2007

Instructions: Work 8 problems.

- 1) a) If A is a 3×3 real matrix with det A > 0, prove A has a positive real eigenvalue.
- b) Assuming a), if also $A^tA = Id$, prove A fixes some non zero vector v, (Av = v), and A defines a rotation about the line through v. [A rotation about a line L through the origin in \mathbb{R}^3 must fix L pointwise, preserve the perpendicular plane through the origin, and induce a rotation about the origin in this plane.]
- 2) If A is the 4×4 matrix

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & -2 & 0 & 1 \\ -2 & 0 & -1 & -2 \end{bmatrix}$$

over \mathbb{Q} , then find the characteristic polynomial, minimal polynomial, Jordan form, and the cyclic decomposition for the $\mathbb{Q}[X]$ module structure defined by A on \mathbb{Q}^4 . [The Jordan form of A does exist over \mathbb{Q} .]

- 3) a) Prove that an action by a group G on the set $\{1,...,n\}$ defines a homomorphism $G \to Sym(n)$ from which the original action can be recovered.
- b) Prove that if G has odd order, and H is a subgroup of index 3, then H is normal.
- 4) Prove in as much detail as possible, there exist exactly two groups of order 21 up to isomorphism, and describe both groups by generators and relations.
- 5) Prove directly that if k is a field, then k[X] is a unique factorization domain, assuming basic divisibility properties for polynomials, but no general theorems about Euclidean domains, pid's and so on.
- 6) a) Prove the complex number field \mathbb{C} contains exactly 5 subfields isomorphic to $\mathbb{Q}[X]/(X^5-3)$.
- b) Compute the Galois group of $X^5 3$, and show it is a non abelian solvable group.
- 7) Prove the fundamental theorem of algebra as follows.
- a) Assuming elementary calculus and high school algebra, explain why the real number field $\mathbb R$ has no non trivial odd degree extensions, and the complex number field $\mathbb C$ has no non trivial quadratic extensions.
- b) Assuming a) prove that if E is any non trivial Galois extension of \mathbb{R} , then $E = \mathbb{C}$. [Hint: start by computing the fixed field of the Sylow 2-subgroup.]
- 8) a) If p and q are distinct primes, prove $\mathbb{Z}/(p^nq^m)$ and $\mathbb{Z}/(p^n)\times\mathbb{Z}/(q^m)$ are isomorphic as rings.
- b) Find the standard decomposition of the abelian group $U = (\mathbb{Z}/(144))^*$ of units in the ring $\mathbb{Z}/(144)$, as a product of cyclic groups.
- 9) a) If f is a polynomial in k[X], prove any two splitting fields E, F for f (both containing the field k), are isomorphic.
- b) Prove two finite fields, both with exactly 32 elements, are isomorphic.