2017 GRADUATE PRELIMINARY EXAM

All problems are weighted equally. Throughout \(\mathbb{R} \) denotes the real numbers and \(\mathbb{C} \) the complex numbers.

1. Negate the following statements in a "non-cheap" way – especially, avoid using the word "not."
 (a) For all real numbers \(x \), there is a real number \(y \) such that \(|x - y| \geq 2017 \).
 (b) The function \(f : \mathbb{R} \to \mathbb{R} \) is continuous.

2. Let \(V = \{(x, y, z) \in \mathbb{R}^3 \mid 3x + 4y + 5z = 0 \} \).
 (a) Show that \(V \) is a linear subspace of \(\mathbb{R}^3 \).
 (b) Prove or disprove: there is a linear transformation \(S : \mathbb{R}^3 \to \mathbb{R}^3 \) with kernel equal to \(V \).
 (c) Prove or disprove: there is a linear transformation \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) with image equal to \(V \).
 (d) Prove or disprove: there is a linear transformation \(U : \mathbb{R}^3 \to \mathbb{R}^3 \) with kernel and image equal to \(V \).

3. Show (we suggest by induction) that for all non-negative integers \(n \), we have
 \[
 \int_0^\infty x^n e^{-x} dx = n!
 \]

4. For a positive integer \(n \), let \(I_n \) denote the \(n \times n \) identity matrix.
 (a) Let \(A \) be a \(2 \times 2 \) real matrix with eigenvalues \(\lambda_1 = 1 \) and \(\lambda_2 = -1 \). Show: \(A^2 = I_2 \).
 (b) Find a \(3 \times 3 \) real matrix whose only eigenvalues (in \(\mathbb{C} \)) are \(1 \) and \(-1 \) such that \(A^2 \neq I_3 \).
 (c) Let \(A \) be an \(n \times n \) real symmetric matrix whose only eigenvalues (in \(\mathbb{C} \)) are \(1 \) and \(-1 \). Show that \(A^2 = I_n \).

5. Let \(\{f_n : [0, 1] \to \mathbb{R}\}_{n=1}^\infty \) be a sequence of continuous functions that converges uniformly to 0. Show that the sequence \(\int_0^1 f_n(x) dx \) converges to 0.

6. Use the \(\epsilon, \delta \) definition of the limit to show: \(\lim_{x \to 1} \frac{x^2 + 1}{x} = 2 \).

7. Let \(z = f(x, y) \) be a smooth surface. Show that the gradient is perpendicular to the level curves.
 (Suggestion: let \(\gamma(t) \) be a curve contained in a level set of \(f \), and consider the derivative of \(f \circ \gamma \).

8. Let \(X \) and \(Y \) be sets and let \(f : X \to Y \) and \(g : Y \to X \) be functions. We suppose throughout that \(g(f(x)) = x \) for all \(x \in X \).
 (a) Show that \(f \) is injective.
 (b) Show that \(g \) is surjective.
 (c) Give an example in which neither \(f \) nor \(g \) is bijective.