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Abstract. The theta divisor of a Jacobian variety is parametrized by
a smooth divisor variety via the Abel map, with smooth projective lin-
ear fibers. Hence the tangent cone to a Jacobian theta divisor at any
singularity is parametrized by an irreducible projective linear family of
linear spaces normal to the corresponding fiber. The divisor variety X
parametrizing a Prym theta divisor Ξ on the other hand, is singular over
any exceptional point, hence although the fibers of the Abel Prym map
are still smooth, the normal cone in X parametrizing the tangent cone
of Ξ can have non linear fibers. As an illustrative example, we compute
the case of a Prym variety isomorphic to the intermediate Jacobian of
a cubic threefold, where the projectivized tangent cone, the threefold
itself, is parametrized by the 2 parameter family of cubic surfaces cut
by hyperplanes through a fixed line on the threefold. In general we
show that over any very exceptional point on a Prym theta divisor, the
components of the normal cone in X which dominate the tangent cone
to Ξ are supported only on the sublocus of divisors which arise from
the Shokurov line bundle associated to the very exceptional singular-
ity. It is then easy to formulate the expected typical structure of the
parametrization of tangent cones to Prym theta divisors according to
5 basic cases. We provide some other examples to show the diversity
of structure that can actually occur, and identify some open problems.
In an appendix we include the original Mumford/Kempf proof of the
Riemann singularity theorem.

1. Introduction

Describing a tangent cone to a Jacobian theta divisor has three important
aspects:

i) the numerical one of computing the multiplicity at a point in terms of the
dimension of sections of the line bundle associated to that point,

ii) the algebraic one of giving determinantal equations for the tangent cone
in terms of such sections, and

iii) the geometric one of parametrizing the tangent cone by a linear family
of varieties of infinitesimal variations of divisors associated to such sections.

For Jacobian theta divisors, these descriptions were provided by Riemann
[Ri], Mumford and Kempf [K1, K3], and Andreotti-Mayer [A-M] and Kempf
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[K1], respectively. In the case of Prym theta divisors, the precise multi-
plicity was determined relatively recently by Casalaina-Martin [CM], and
consequent Pfaffian algebraic equations given by Smith and Varley [S-V6].
The geometric parametrization is still lacking in a completely precise form;
in particular even for double points the problem of the rank of the quadric
tangent cone is not well understood. By analogy with the work of Mark
Green [G] on constructive Torelli for Jacobians, this has bearing on the con-
structive Torelli problem for Pryms which, by the recent counterexamples of
Izadi and Lange [I-L], seems to be rather complicated and interesting. For
generic Prym varieties of dimension at least 7, Debarre [D] showed that the
étale double cover of curves can be reconstructed from the double points of
the Prym theta divisor.

The case of Jacobians is simpler because the divisor variety provides a
smooth birational resolution of the theta divisor with smooth scheme the-
oretic linear fibers. Consequently the tangent cones are always birationally
ruled by a linear family of linear spaces of known constant dimension. E.g. a
tangent cone to a Jacobian theta divisor Θ is always an irreducible rational
variety. Except in the hyperelliptic case, this resolution of Θ is even a small
one and the “equisingular” deformations of the Jacobian theta divisor corre-
spond exactly to deformations of the divisor variety [S-V2, Lemma, p. 251],
at least to first order.

For Pryms, the divisor variety is never birational to the theta divisor Ξ
and not always smooth. The scheme theoretic fibers of the Abel Prym map
are still smooth, and this implies for Pryms with smooth divisor variety,
i.e. those with no exceptional singularities on Ξ, that every tangent cone
is again parametrized, although not birationally, by a linear family of lin-
ear spaces of known constant dimension [S-V3]. In particular the tangent
cone at a non exceptional singularity of a Prym theta divisor is always ir-
reducible and unirational. This leaves open the problem of describing the
geometric parametrization in the presence of exceptional or very exceptional
singularities on Ξ.

This paper makes a beginning on the problem by providing a complete
description (Theorem 1) in the (very exceptional) case of a Prym repre-
sentation of the intermediate Jacobian of a cubic threefold, and giving one
general result (Theorem 2) about the parametrization of the tangent cone at
an arbitrary very exceptional singularity of a Prym theta divisor. Thus the
typical structure of the parametrization for very exceptional singularities is
displayed. Also an example is given of unexpected behavior that can occur
in the exceptional but not very exceptional case.

Organization of the paper. We recall in section 2 some basic facts about
the theta divisor Ξ of the Prym variety of a double cover �C → C, and the
parametrization of Ξ by the restriction of the Abel map of �C to a special divi-
sor varietyX. Then in section 3 we compute the Abel Prym parametrization
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of the tangent cone to Ξ for the basic example of a very exceptional singu-
larity on a Prym theta divisor, the unique triple point on the theta divisor
of the intermediate Jacobian of a cubic threefold W . As is known [B3], the
intermediate Jacobian can be represented as the Prym variety of a double
cover �C of the plane quintic discriminant curve C of a representation of the
cubic threefold as a conic bundle via plane sections through a fixed general
line � in W .

We will show in this case, contrary to the case of a Jacobian, that if
L = π

∗(g25) is the line bundle on �C pulled back from O(1) = M on the plane
quintic C, corresponding to the triple point L on Ξ, then the normal cone to
the fiber |L| in X of the Abel Prym map, which maps onto the tangent cone
to Ξ at L, is reducible with two components. Moreover, the only component
that dominates the tangent cone to Ξ at L is supported on a proper subva-
riety of that fiber, in fact on the subvariety S = P(π∗

H
0(g25)) corresponding

to the pulled back sections of the very exceptional “Shokurov” line bundle
M = g

2
5 on the plane quintic C. Contrary to the case of Jacobians, this

parametrization is not by a family of linear spaces but by a linear net of
cubic surfaces, sections of the threefold W by the net of hyperplanes in P4

passing through the distinguished line � in W .

In section 4, we explain the geometry of Mumford’s skew-symmetric ma-
trix of linear forms associated to each point of a Prym theta divisor. Then
in section 5 we identify a general phenomenon for very exceptional singu-
larities. I.e. for any very exceptional singularity L on a Prym theta divisor
Ξ, there is by definition a subvariety π

∗|M |+B of the fiber |L| of the Abel
Prym map over L, with h

0(M) > 1
2h

0(L). Assuming that S = π
∗|M |+B has

maximal dimension among such M , the tangent cone to Ξ is parametrized
not just by the normal cone to the fiber |L| in the Prym divisor variety X,
but by those components of the normal cone supported on the subvariety
S. In particular, when S is not all of |L|, the normal cone of the divisor
variety along the Abel Prym fiber over a very exceptional singularity of Ξ
is reducible, contrary to the case of Jacobians.

In section 6, we formulate what the expected typical structure of the
parametrization seems to be and make some remarks. For instance the sit-
uation for the cubic threefold generalizes somewhat to the case of any odd
dimensional cubic hypersurface containing a linear subspace of codimension
2 in the hypersurface. We include 2 examples illustrating expected behavior
and pose a few basic questions. In the final section 7 we present an example
to show how some of the “expected” structure can break down; in particu-
lar a reducible normal cone can occur also at an exceptional but not very
exceptional singularity.

In an appendix, we reproduce an account, following old expository notes
of Kempf, of the famous “unpublished” proof of the Riemann singularity
theorem, as given by Mumford and enhanced by Kempf. Throughout this
paper we work over the complex numbers C, for simplicity and uniformity.
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Most of the arguments will still hold unchanged over an algebraically closed
field of characteristic �= 2, but we have not checked any additional details
or references.

2. The parametrization of a tangent cone

2.1. The setup. For full details on the Abel Prym map consult [S-V3].
Let ϕ : X → P be the Abel Prym map for a connected étale double cover
π : C̃ → C of a smooth curve C of genus g. Then the polarized Prym
variety P is an abelian subvariety of the Jacobian ( �J, �Θ) of �C, with principal
polarization Ξ defined by 2Ξ = P · �Θ, and the Prym divisor variety X is the
inverse image of P , hence also of Ξ, under the Abel map α̃ : �C(2g−2) → �Θ
for �J . We denote the restriction of α̃ to X by ϕ : X → Ξ. When C

is non hyperelliptic, as we assume hereafter, X is irreducible of dimension
p = dim(P ) = g − 1 = g̃ − g, and ϕ maps X onto the theta divisor Ξ of P ,
with fibers isomorphic to odd dimensional projective spaces, with generic
fiber dimension one. Over a point L of Ξ, the fiber of ϕ is isomorphic to the
linear series |L| = PH0( �C,L).

The multiplicity of Ξ at L is as small as possible, equal to 1
2h

0(L), unless
L is a very exceptional singular point. Recall that L is called exceptional if
the space H

0(L) has an isotropic subspace of dimension at least 2 for the
Mumford pairing

H
0(L)×H

0(L)
β
−→ H

0(ΩC(η)),

and is called very exceptional if it has an isotropic subspace of dimen-
sion greater than 1

2h
0(L). This pairing comes from [M, p. 343]: for s, t ∈

H
0( �C,L), first let �s, t� in H

0(Ω �C) denote the cup product of s and ι
∗(t),

by H
0(L)×H

0(Ω �C ⊗L
∗) → H

0(Ω �C), where ι is the involution of �C over C
and the isomorphism ι

∗(L) ∼= Ω �C ⊗ L
∗ is used (since the norm of L is ΩC).

Then set β(s, t) = �s, t� − �t, s� in the subspace H
0(ΩC(η)).

The term “exceptional singularity” has been fairly standard for Mum-
ford’s case 1 in [M, p. 344]. By Casalaina-Martin’s result [CM, Thm. 2,
p. 164], the multiplicity of L on Ξ equals the larger of 1

2h
0(L) and the di-

mension of the largest isotropic subspace of H0(L).

2.2. The parametrization induced by ϕ for a tangent cone to Ξ.
Let L be any point on Ξ, and |L| the fiber of ϕ over it. Then the projective
normal cone to |L| in X maps onto the projective tangent cone at L to Ξ,
by the map induced by blowing up the subvarieties |L| and {L} in X and Ξ
respectively. Moreover, X is contained in the smooth variety �C(2g−2), and
the induced map on the blowup of |L| in X factors through the induced map
of the blowup of |L| in �C(2g−2). Since both |L| and �C(2g−2) are smooth, that
latter induced map is given by the differential of the Abel map on �C(2g−2).
Thus every point of the normal cone to |L| in X is represented by a Zariski
tangent vector to �C(2g−2), and the induced map from the normal cone of |L|
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in X to the tangent cone of Ξ at L, is the restriction of the Abel differential
acting on the Zariski tangent space.

Now if L is not an exceptional singularity on Ξ, i.e. H0(L) has no isotropic
subspaces of dimension 2 or more, then the tangent cone to Ξ is parametrized
by the family of Zariski normal spaces to |L| in X. I.e. the tangent cone in
the non exceptional case is the intersection of T0(P ) with the tangent cone
to �Θ in T0( �J), which is parametrized by the normal Zariski tangent bundle
to |L| in �C(2g−2). The Zariski normal bundle to |L| in X is the pullback
of T0(P ) by the differential of the Abel map on �C(2g−2), and hence that
bundle maps onto the tangent cone to Ξ by the Abel differential, i.e. the
map induced on the blowup of |L| in X. This is proved in our paper [S-V3,
Cor. 2.8].

3. Abel Prym differential for the Prym representation of a
cubic threefold W defined by a line � in W

We will compute the parametrization PC|L|(X) → PCL(Ξ) for the beauti-
ful case of a Prym representation of the cubic threefold, in which the unique
singularity is very exceptional.

Let ϕ : X → P be the Abel Prym map for an odd double cover π : �C →

C of a plane quintic curve C associated to a general line � in a smooth
cubic 3 fold W . Then the polarized Prym P is isomorphic to the polarized
intermediate Jacobian of W . In particular X maps onto the theta divisor
Ξ, a 4 fold in P with one singular point L, over which the fiber of ϕ is
E = |g310|

∼= |π∗(g25))|
∼= P3, and the projective tangent cone to Ξ at L is W .

A clear and complete proof of this story on the singularities of theta for the
intermediate Jacobian of a cubic threefold was published by Beauville [B3];
the statement is in Mumford’s paper [M, p. 348]. Some additional references
are [F, p. 80], [S-V1, Ex. 6.4, p. 670], and [S-V3, §5, pp. 503-506].

Theorem 1. If W is a smooth cubic threefold, the Abel Prym map ϕ : X →

Ξ defined by a general line � in W , induces a map from the reducible (2

components) projective normal cone along |π∗(g25)| in X onto the projective

tangent cone at L (isomorphic to W ) of Ξ. One component is a trivial

P1 bundle over |L| ∼= P3 which collapses onto the line �, and the fibers of

the other component, supported over π∗|g25|
∼= P2, map isomorphically to the

cubic surfaces cut on W by the net of hyperplanes through � in PT0(P ) ∼= P4.

Proof. We know [S-V3, S-V5] the singular locus of X consists precisely of
the subvariety S = π

∗|g25|
∼= P2 of E. Moreover by the general theory of

blowups, the projective normal cone of X along E maps surjectively onto
W by the restricted differential ϕ∗ of ϕ. (Indeed the differential ϕ∗ on the
projective normal space PNE(X) containing this normal cone PCE(X) is
induced by a map on PNE( �C(10)), from blowing up the ambient smooth
variety �C(10) along E, and this latter map is the differential of the Abel map
on �C(10).)
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The Zariski tangent spaces of X have dimension 5 away from S, and
dimension 7 at points of S, according to [S-V3, Cor. 2.14, p. 491]. The
fibers of ϕ are all smooth by the Riemann-Kempf, Mattuck-Mayer theorem,
and since E is the only fiber which is not isomorphic to P1, the kernel of
the differential of ϕ acting on the Zariski tangent space to X has dimension
one away from E and dimension 3 at points of E. Thus the image of the
differential of ϕ has linear dimension 5 − 1 = 4 away from E, 5 − 3 = 2 at
points of E − S, and 7− 3 = 4 at points of S.

We claim the image space of that differential is constant on E−S, i.e. at
all points of E−S the image of the differential of ϕ is the same 2 dimensional
linear subspace of the tangent space to P at L. Equivalently the projective
image of the differential of ϕ is the same projective line in W for every point
of E − S. To see this, note that the differential of ϕ defines a morphism
from E − S to the Fano surface of lines in W . Since that Fano surface
embeds in the intermediate Jacobian of W it does not contain any rational
curves. Since E−S is rationally connected, this morphism is constant. [The
constancy of the map on E − S in this case can also be seen directly from
the skew-symmetric matrix of linear forms described in section 4.]

Thus the 4 dimensional irreducible component of the projective normal
cone of X along E corresponding to the closure of the normal P1 bundle of
E − S maps by the differential of ϕ onto a single line in W . Since the full
normal cone maps onto W there must be other components supported in S.
We claim there is only one, supported on all of S.

First of all, at points of S the Zariski tangent space to X has dimension
7 and the kernel of φ∗ has dimension 3, so the Zariski normal spaces have
dimension 4. Hence each fiber of the projective normal cone at a point of
S is contained in a P3, and φ∗ is injective on this P3. Since W does not
contain any copies of P3, the fibers of the projective normal cone at points
of S have dimension at most 2. In particular, since S ∼= P2, no component
of the pure 4 dimensional projective normal cone is supported in a proper
subvariety of S.

Thus if Z is the part of the projective normal cone supported in S, then
every component of Z is supported on all of S, all fibers of Z → S have pure
dimension 2, and each fiber injects by φ∗ into the cubic surface cut from W

by the image of the projective normal space under φ∗, which is isomorphic
to P3. Since W contains no 2-planes, each of these cubic surface sections is
irreducible. Hence each fiber of Z → S is an irreducible cubic surface, and
by [Shaf, Ch. I, 6.3, Theorem 8, p. 77] Z itself is irreducible, i.e. there is
only one irreducible component of the normal cone supported on S.

Thus the projective normal cone to E in X is pure 4 dimensional and has
two irreducible components. One component is supported on E ∼= P3 and is
at least generically a P1 bundle that maps onto a unique line �

� in W . The
other component is supported on π

∗|g25|
∼= P2 and maps onto W , with each

fiber of this component over a point of π∗|g25| mapping isomorphically onto
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a cubic surface hyperplane section of W . We will show that the component
of the projective normal cone in X along π

∗|g25| maps by the differential of
ϕ to the net of cubic surface sections of W cut by the net of P3’s passing
through the line �, in particular that � = �

�.

To see that �
� = �, we recall the way the line � is used to construct the

curve C. First W in P4 is fibered over the P2 of planes through �, with
fibers the net of conics residual to � in each plane section of W . Then C is
the curve of reducible conics in this net, and �C is the curve of components
of reducible conics. The Prym canonical model of C in P4 is the locus of
singular points of reducible conics and is mapped isomorphically to the plane
quintic model by the projection P4 ��� P2 with the line � as center.

Under this projection, a line in P2 corresponds to a hyperplane in P4

containing �. Hence each divisor of |g25| = |M | cut on the quintic by a line
in P2 corresponds to the moving part of the Prym canonical divisor cut on
the Prym canonical model by the corresponding hyperplane in P4 through
�. Since by Riemann Roch only one Prym canonical divisor vanishes on
each divisor of the g

2
5, the net of divisors of the g

2
5 on the Prym canonical

curve span the net of hyperplanes in P4 through �. Moreover, recalling that
K + η = M + (M + η), the fixed part of the corresponding net of Prym
canonical divisors, i.e. the unique divisor in |M + η|, spans the line �.

If D is a divisor of |M | = |g25|, and π
∗(D) is the corresponding very

exceptional divisor in |L|, it follows from the geometric description of the
Prym canonical map [S-V3, Lemma 5.2, p. 504] or [T], that the hyperplane
spanned by D on the Prym canonical curve is contained in the intersection
of PT0(P ) with the span of the divisor π

∗(D) on the canonical model of
�C in PT0(J̃). Moreover by the formula in [S-V3, Lemma 2.6, p. 488] this
intersection equals the (projective) image of the differential of ϕ.

It follows that the base locus � of the hyperplanes spanned by divisors of
|M | on the Prym canonical curve must equal the base locus �� of the images
of ϕ∗ at points of S = π

∗|M | in X. One can also compute directly the
image of ϕ∗ at the unique divisor of π∗|M + η| in E − S. Namely by the
same argument as above, this image contains hence equals the span � of the
divisor |M + η| on the Prym canonical curve. Since ϕ∗ has the same image
�
� at all points of E − S, we again see that � = �

�. �

Remarks. This discussion of the parametrization PCE(X) → PC{π∗(g25)}(Ξ)

associated to a cubic threefold W ⊂ P4 and general line � on it, shows that
the normal cone CE(X) with its reduced structure, has multiplicity 4 at a
general point of S = π

∗|g25|. The irreducible component of CE(X) supported
over S is the family of affine cubic cones over the hyperplane sections of W
through �, and the component supported over all of E is smooth in this
case. Indeed, with PCE(X) �→ E × P4, it was shown that the irreducible
component that dominates E maps onto a line �� ⊂ P4 and hence is a closed
subvariety of the 4-dimensional variety E×�

�. Then, since PCE(X) has pure
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dimension = dim(X) − 1 = 4, this component must be (set-theoretically)
equal to E × �

�.
For the line bundle L = π

∗(g25) in this case, Mumford’s skew-symmetric
matrix of linear forms is 4× 4 and can be written (see [Shok, p. 121]) with
a 3× 3 upper left block of 0’s and 3 linearly independent linear forms in the
4th column (above the 0 in the bottom right corner). The 3 linear forms
give equations for the hyperplanes in P4 corresponding to the pullback of
sections of g25 on P2, hence define the line � ⊂ P4. This base locus also equals
�
� by Cor. 1 of the next section.

4. The geometry of Mumford’s skew-symmetric matrix of
linear forms

For ϕ : X → Ξ and L ∈ Ξ we are interested in the parametrization
C|L|(X) → CL(Ξ) of the tangent cone by the normal cone along the fiber.
But how much of the structure is already determined at 1st order, i.e. by
the Abel Prym map derivative ϕ∗ : N|L|(X) → TL(P ) on the normal space
along the fiber? Thus, consider the diagram:

|L|

|

L

⊂

∈

X

↓ ϕ

Ξ ⊂ P

�

|L| ← N|L|(X)

ϕ∗ ↓

TL(P )

⊇

⊃

C|L|(X)

↓

CL(Ξ)

According to Kempf and Mumford, N|L|(X) ⊂ |L| × TL(P ) is pulled
back from a universal linear algebra model, where N|L|(X) is embedded in
|L| × TL(P ) by the product of the projection map N|L|(X) → |L| and ϕ∗ :
N|L|(X) → TL(P ). We will review a formulation of this result. Throughout
we use the canonical identification of the tangent spaces TL(P ) and T0(P )
by translation in the Prym variety, and write whichever one seems clearest
in each instance.

The skew-symmetric bilinear form β : H0(L)×H
0(L) → H

0(ΩC(η)) can
be represented w.r.t. a basis for H0(L) as a skew-symmetric matrix M1 of
linear forms on T0(P ), since H

0(ΩC(η)) ∼= T
∗
0 (P ). Thus, with n = h

0(L),
let Alt(n) be the vector space of all n× n skew-symmetric matrices over C.
Then M1 defines a linear map

TL(P ) → Alt(n),

so that if we identify |L| = Pn−1 (from H
0(L) ∼= Cn = column vectors, w.r.t.

to our basis) then we get a map on the product

|L| × TL(P )
(ident.,M1)
−−−−−−−→ Pn−1

×Alt(n).

Now define

K = {([σ], A) ∈ Pn−1
×Alt(n) | Aσ = 0},



PARAMETRIZING EXCEPTIONAL TANGENT CONES 9

where [σ] denotes the point of Pn−1 determined by a nonzero column vector
σ ∈ Cn.

Theorem (Kempf and Mumford). N|L|(X) = (ident., M1)−1(K) as sub-
schemes of |L| × TL(P ).

Proof. We can reference Kempf [K1, Lemma, p. 183], in the language of
“well-presented families of projective spaces”, for the corresponding 1st or-
der statement and proof in the Jacobian case. That is, since L is a point
of the theta divisor of the Jacobian �J of the curve �C, one has the geometry
associated with the Riemann-Kempf matrix, which is an n × n matrix of
linear forms on T0( �J) and is never skew-symmetric. Then Mumford [M,
pp. 342-343] showed how to restrict all the 1st order objects to the Prym
case. �
Corollary 1. For L ∈ Ξ, let s be a nonzero section of the line bundle L

on �C and let [s] ∈ |L| ⊂ X denote the divisor of s. In terms of a basis for
H

0(L), if s is expressed as a column vector and M1 as a skew-symmetric
matrix of linear forms on T0(P ), then the image in TL(P ) ∼= T0(P ) of the
fiber of N|L|(X) at the point [s], i.e. of the Zariski normal space to |L|

in X at [s], is the common base locus in T0(P ) of the column vector of
linear forms M1s. Intrinsically, the equivalent statement is that the image
ϕ∗(N|L|(X)|[s]) ⊂ TL(P ) ∼= T0(P ) is equal to {v ∈ T0(P ) | β( ·, s)(v) =
0 (as an element of H0(L)∗)}.

Proof. A vector v in T0(P ) is in that common base locus if and only if the
column vector (M1s)(v) = M1(v)s = 0, iff s is in the kernel of M1(v), iff
([s],M1(v)) is in K, if and only if ([s], v) is in N|L|(X). �
Corollary 2. Every irreducible component of the normal space N|L|(X) has
dimension at least p = dim(P ).

Proof. By the theorem, N|L|(X) is the inverse image of a smooth subvariety
of codimension n − 1 in a smooth variety. Hence every irreducible compo-
nent of N|L|(X) has codimension at most n − 1 = dim|L| in |L| × TL(P ),
i.e. dimension ≥ p. �
Remark. In principle the results summarized here have been completely
known at least since 1974. The higher order statement in the Jacobian case
is given with references in [K1, Thm., p. 183] and a proof is given in [K3,
Thm. 21.4, p. 189]. The original arguments of Mumford and Kempf are
summarized in the Appendix to the present paper, following [K2]. One may
consult our paper [S-V6, sections 3-4] for some review and formulations. The
main point of [S-V6] was to refine the known existence theory for a local
inducing map from the Jacobian �J to matrix space, to get the existence
[S-V6, Thm., p. 225] of a local inducing map from the Prym P to skew-
symmetric matrix space. It is the 1st order part, i.e. the derivative at L of
a nonlinear map, that always has an intrinsic description as the linear map

TL(P ) −→ Λ2(H0(L)∗) ∼= {alternating bilinear forms on H
0(L)}
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dual to Mumford’s linear map ([M, display just below the middle of p. 343])

T
∗
0 (P ) ∼= H

0(ΩC(η)) ←− Λ2
H

0(L).

Thus, in terms of a basis for H
0(L), if we identify the alternating bilinear

forms on H
0(L) with the skew-symmetric n × n matrices Alt(n) (and also

equate T0(Alt(n)) with Alt(n)), then we say simply that Mumford’s skew-
symmetric matrix of linear forms on T0(P ) expresses this derivative at L as
TL(P ) → Alt(n), z �→ M1(z), by evaluating all the entries at z ∈ TL(P ) ∼=
T0(P ).

Now we look at the corresponding linear algebra diagram:

Pn−1

|

0

⊂

∈

K
↓ q

Σ

⊂

⊂

Pn−1
×Alt(n)

↓

Alt(n)

�
Pn−1 ←NPn−1(K)

↓

Alt(n)

=

⊃

CPn−1(K)

↓

C0(Σ) = Σ

Here Σ is the locus in Alt(n) consisting of all singular n × n skew-
symmetric matrices. Precisely, Σ ⊂ Alt(n) is the closed subscheme defined
by the equation Pf(A) = 0, where the Pfaffian Pf is a homogeneous poly-
nomial function of degree n/2 on Alt(n) whose square is the determinant.
Σ is a conical hypersurface (with vertex at 0) since Pf(A) is homogeneous
in A, and is reduced and irreducible.

The variety K is smooth, and its closed subscheme {([σ], 0)} ∼= Pn−1 is
smooth, so the normal space NPn−1(K) is a vector bundle over Pn−1 and is
equal to the normal cone CPn−1(K) of K along Pn−1. The tangent cone of Σ
at 0 is Σ itself: C0(Σ) = Σ (under the canonical vector space identification
T0(Alt(n)) = Alt(n)). Similarly, the normal bundle NPn−1(K) ⊂ Pn−1 ×

Alt(n) is already exactly K itself.

Thus the parametrization q : K → Σ, ([σ], A) �→ A, (induced by the
projection Pn−1×Alt(n) → Alt(n) to the 2nd factor), can also be interpreted
as the parametrizationNPn−1(K) → C0(Σ) of the tangent cone by the normal
cone (or space, or bundle) along the fiber.

In summary, the map N|L|(X) → TL(P ) is equivalent to the pullback of
the map q (viewed as K = NPn−1(K) → C0(Σ) = Σ ⊂ Alt(n)) by the linear
map TL(P ) → Alt(n):

|L| ← N|L|(X)

ϕ∗ ↓

TL(P ) M1
−→

Pn−1 ← K
↓

Alt(n)

In other words, the Abel Prym derivative on the normal space of X along
|L| is induced - by Mumford’s skew-symmetric matrix of linear forms - from
the completely standard (projective) “kernel fibration” q : K → Σ ⊂ Alt(n).
For any A ∈ Alt(n) the fiber of q is the projectivized null space Pker(A),
and the generic fiber over Σ is a P1.



PARAMETRIZING EXCEPTIONAL TANGENT CONES 11

Now we signal exactly what is parametrized by the normal space N|L|(X).
The result [S-V3, Cor. 2.8, p. 489] is that N|L|(X) always parametrizes the

restriction of the Jacobian tangent cone CL(�Θ), to the Prym tangent space
TL(P ); that is,

ϕ∗(N|L|(X)) = CL(�Θ) ∩ TL(P ).

It follows that either CL(�Θ)∩TL(P ) = CL(Ξ) as sets or else CL(�Θ) ⊃ TL(P ).
In the first case (that is, when CL(�Θ) ∩ TL(P ) = CL(Ξ) as sets), then the
scheme CL(Ξ) is defined as expected by an equation whose square is an
equation for the scheme CL(�Θ) ∩ TL(P ), and we say that “RST holds” at
L. The main theorem of [S-V5] is that the second case occurs (that is, the
containment CL(�Θ) ⊃ TL(P ) holds, so that ϕ∗(N|L|(X)) = TL(P )) if and
only if L is a very exceptional point of Ξ (as defined on p. 4 above).

Finally, note that there is a difference between analyzing:

(a) all n× n skew-symmetric matrices of linear forms, perhaps subjected to
some additional properties (such as that of [S-V5, Lemma 2.3(iii), p. 451]),
and
(b) those that actually occur as “M1” for an étale double cover of curves
and L on Ξ.

In other words, certain phenomena that could happen in case (a) might be
prevented in case (b) by some property coming from the curve theory.

Question. Which skew-symmetric n×n matrices of linear forms can occur?

Question. For L ∈ Ξ, what are the possible subvarieties of |L| ⊂ X over
which the irreducible components of the normal space N|L|(X) of X along
|L| are supported?

Remark. The dimension of the normal vector spaces (the fibers ofN|L|(X) →
|L|) can vary over |L| since it goes up at any exceptional divisorD in |L|. Let
us record the most elementary dimension estimate to ensure irreducibility
of the normal cone C|L|(X) ⊂ N|L|(X). Consider the (locally closed) locus
Ik(L) consisting of all divisors D ∈ |L| for which the maximal isotropic
subspace of β through D has dimension exactly k − 1 (as projective linear
subspace of |L|). Then for D ∈ Ik(L), we know [S-V3] that dim(TD(X)) =
p + (k − 1). Therefore the fiber of the normal space N|L|(X) over such
a point D has dimension p + (k − 1) − (n − 1) = p − (n − k). Since the
normal cone C|L|(X) has pure dimension p and the fibers of the normal cone
are contained in the fibers of the normal space, it follows that as long as
dim(Ik(L)) < n−k there cannot be an irreducible component of the normal
cone that dominates an irreducible component of Ik(L) (i.e. that lies over
an irreducible component Z of the closure of Ik(L) and maps onto Z). In
fact since all components of N|L|(X) have dimension ≥ p, there is also no
component of the normal space dominating Ik(L) when dim(Ik(L)) < n−k.
For instance, taking k = 2, unless there are at least∞n−3 exceptional pencils
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in |L| there is not a component of C|L|(X) dominating a component of
I2(L) ⊂ |L|. Thus if for all k with 2 ≤ k ≤ n, we have dim(Ik(L)) < n− k,
then the normal cone C|L|(X) is irreducible and equals the normal space
N|L|(X).

5. General structure of the very exceptional case

As before, let (P,Ξ) be the Prym variety of a connected étale double
cover π : �C → C of a connected, nonyperelliptic smooth curve of genus
g ≥ 3. Thus p = dim(P ) = g − 1 and for any point L ∈ Ξ, the tangent
cone CL(Ξ) ⊂ TL(P ) is a purely p− 1 dimensional conical affine subvariety
of the p dimensional vector space TL(P ) ∼= T0(P ). Now let L on Ξ be a
very exceptional or “Shokurov” singularity on Ξ; i.e. assume there exists
a subspace of H0(L) which has dimension more than 1

2h
0(L) and which is

isotropic for the Mumford pairing β : H0(L)×H
0(L) → H

0(ΩC(η)). If it is
maximal isotropic, then it has form π

∗(H0(M)) · u, where M is the unique
Shokurov line bundle on C for L, and the divisor (u) has no invariant part
[S-V5].

Theorem 2. Let L ∈ Ξ be a very exceptional singularity and let π∗(H0(M))·
u ⊂ H

0(L) be the unique maximal isotropic subspace of dimension h
0(M) >

1
2h

0(L). Then the tangent cone CL(Ξ) is the image of those irreducible

components of the normal cone C|L|(X) that lie over π∗|M |+B ⊂ |L|. More

precisely, the union, over all divisors in |L| − (π∗|M | + B), of the images

in TL(P ) of the differential of the Abel Prym map ϕ : X → Ξ, cannot have
dimension more than p− 3; in particular this union cannot contain a p− 1
dimensional component of the tangent cone CL(Ξ) of Ξ at L.

Proof. We may as well assume that the subspace π
∗(H0(M)) · u has di-

mension m = h
0(M) strictly between 1

2h
0(L) and h

0(L), since otherwise
|L| − (π∗|M | + B) is empty and the result holds vacuously. If s is any sec-
tion in H

0(L)−π
∗
H

0(M)·u, then by the RRT of Mattuck and Mayer [M-M],
the image of the differential of the Abel map on �C(g̃−1) at the divisor s = 0,
equals the “(affine) span of that divisor” in T0( �J), i.e. equals the base locus
of those canonical differentials on �C vanishing on that divisor. In particular
it lies in the base locus of any canonical differential with s as a (cup product)
factor. Now intersect that base locus with T0(P ), and we get the base locus
of the restriction of those differentials. Since the symmetric part of those
differentials vanishes upon that restriction, the resulting subspace equals the
base locus on T0(P ) of the skew symmetrization of those differentials. In
particular if v1, ..., vm is a basis of H0(M), then the restriction of the span
of the divisor s = 0 lies in the base locus of β(s, u · v1), ..., β(s, u · vm), where
(from p. 4 above) β(s, u·vj) = �s, u · vj�−�u · vj , s� = s·ι∗(u·v1)−s·ι∗(u·v1)
for each j = 1, ...m.

Claim. These restricted Prym differentials are linearly independent.
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Proof of Claim. If not, some non trivial linear combination of the {u · vj}

pairs to zero with s under β. Then the isotropic subspace spanned by s and
this non zero section of H0(L) has non trivial intersection with the maximal
isotropic subspace π∗

H
0(M) ·u, a contradiction. I.e. their union would span

an even larger isotropic subspace, by results in [S-V5, Lemma 2.3(iii)]. �
Since the intersection with T0(P ) of the image of the Abel differential is in

the base locus of these m independent Prym differentials, that intersection
has codimension at least m in T0(P ).

Next we note that since the variety X is the inverse image of P under
the Abel map, its tangent spaces at every point are inverse images of T0(P )
under the Abel differential. Hence the intersection with T0(P ) of the image
of the Abel differential equals the image of the differential of the restricted
Abel map, i.e. of the Abel Prym differential.

Now if we consider the divisor s + t = 0, where again s is any section in
H

0(L)− π
∗
H

0(M) · u, and t is any section of π∗
H

0(M) · u, then t pairs to
zero with every u · vj under β, so the base locus of β(s, u · v1), ..., β(s, u · vm)
equals the base locus of β(s+ t, u · v1), ..., βs+ t, u · vm). Hence we get the
same constraint on the restricted image of the differential, i.e. the image of
the differentials of Abel Prym at the points s = 0 and s+ t = 0 lie in exactly
the same linear subspace of codimension m in T0(P ). Hence the union
of the linear images over all divisors of sections in H

0(L) − π
∗
H

0(M) · u,
has dimension at most equal to (p − m) + dimP(H0(L)/π∗

H
0(M) · u) =

(p−m) + dim(H0(L)/π∗
H

0(M) · u)− 1. Since H
0(M) has dimension more

than 1
2 of h0(L), this equals at most 1

2h
0(L)−2+p−m. Since 1

2h
0(L) < m,

this is at most p−3, (linear dimension). Thus the image of the projectivized
linear normal cones at points of |L| − (π∗|M | + B), also has codimension
at least 3 in T0(P ), and the same holds for the images in PT0(P ) of the
projective normal cones at points of |L| − (π∗|M |+B).

Consequently the normal cones supported on the subvariety of |L| in X

of very exceptional divisors π∗|M |+B, must surject onto the tangent cone
to Ξ. �

6. The expected typical structure and examples

6.1. The simplest possible structure for the parametrization. The
different types of points L on a Prym theta divisor Ξ can be listed as follows:

(1) smooth point
(2) nonexceptional singular point
(3) exceptional but not very exceptional singular point
(4) very exceptional but not totally exceptional singular point
(5) totally exceptional singular point

Here, “totally exceptional” means that H0(L) = π
∗
H

0(M) · u, when all the
sections of L on �C are pulled back from C, up to one common multiplication
upstairs (by a section of L⊗ π

∗(M∗)).
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In particular, we are making a subdivision of the class of singularities
traditionally known as stable. Recall that a singular point L on the theta
divisor of the Prym variety of an étale double cover �C → C is called stable
if h0( �C,L) ≥ 4. Hence cases (2), (3), (4) above are all stable, and L in case
(5) is non stable if and only if h0(L) = 2.

For each of the 5 cases we review briefly the properties that are known to
hold. Then for the exceptional cases (3,4,5) we will formulate the simplest
structure that the parametrization C|L|(X) → CL(Ξ) could possibly have.

Consider L ∈ Ξ, and set n = h
0(L) so that |L| ∼= Pn−1. In every case there

is a surjective map C|L|(X) → CL(Ξ) induced by the Abel Prym differential
ϕ∗.

(1) If L is a smooth point of Ξ, then n = 2, X → Ξ is a P1-bundle
over a neighborhood of L, and the divisor variety X is smooth along |L|.
C|L|(X) = N|L|(X) is a vector bundle of rank p − 1 over |L| (and hence is
smooth, irreducible), and the normal bundle N|L|(X) maps onto the tangent
cone CL(Ξ), which is a hyperplane H ⊂ TL(P ). It follows that the normal
bundle N|L|(X) ⊂ |L| × TL(P ) is equal to |L| ×H, and hence is trivial over
|L|.

(2) If L is a nonexceptional singular point of Ξ, then n ≥ 4, the divisor
variety X is smooth along |L|, C|L|(X) = N|L|(X) is a vector bundle of rank
p−(n−1) over |L| (and hence is smooth, irreducible), and the normal bundle
N|L|(X) maps onto the tangent cone CL(Ξ). Thus CL(Ξ) is swept out by a
family of linear spaces (all of the same dimension) parametrized by |L|.

(3) If L is an exceptional but not very exceptional singular point of Ξ,
then n ≥ 4, and the divisor variety X has some singularities in |L| while the
general point of |L| is smooth onX. Thus N|L|(X) fails to be a vector bundle
over |L|, but the fiber over a generic point does have dimension p− (n− 1).
The normal space N|L|(X) maps onto the tangent cone CL(Ξ). Therefore,
as in the previous cases (1,2), Mumford’s Pfaffian equation of degree n/2
defines CL(Ξ) ⊂ TL(P ) and “RST” holds at L. Surprisingly however, the
unique component of N|L|(X), and of C|L|(X), dominating |L|, may fail to
surject onto CL(Ξ); see section 7 below for an example.

(4) If L is a very exceptional but not totally exceptional singular point of
Ξ, then n ≥ 4, the divisor variety X is singular (at least) along a dis-
tinguished projective linear subspace S ⊂ |L| of dimension m − 1 with
n/2 < m < n, and X is smooth at a general point of |L|. The normal
cone C|L|(X) is reducible. The unique irreducible component dominating
|L| does not map onto an irreducible component of CL(Ξ). Indeed every ir-
reducible component of CL(Ξ) is dominated by some component of C|L|(X)
which is supported over S. In particular, there is at least one irreducible
component supported over S (dominating either all of S or a subvariety)
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that maps onto an irreducible component of CL(Ξ). Furthermore, any irre-
ducible component of C|L|(X) supported over S is properly contained in an
irreducible component of N|L|(X).

(5) If L is a totally exceptional singular point of Ξ, then X is singular
everywhere along |L|, the fibers of N|L|(X) over |L| all have dimension p,
and it follows that N|L|(X) is the trivial vector bundle |L|×TL(P ). (Indeed,
N|L|(X) �→ |L| × TL(P ) is always a closed subscheme and so equality must
hold in this case.)

Now what is the expected typical structure in cases (3,4,5), unless some
degeneracy occurs?

In (3) the simplest possibility is for N|L|(X) to be irreducible, and then
it would follow that C|L|(X) = N|L|(X) and sweeps out CL(Ξ) by a family
of linear spaces (not all of the same dimension) parametrized by |L|.

In (4) the simplest possibility is for CL(X) to have 2 irreducible com-
ponents, one dominating |L| and the other dominating S, with the latter
component sweeping out CL(Ξ) by a family of p − (m − 1) dimensional
subvarieties parametrized by S.

In (5) the simplest possibility is for CL(X) to be irreducible and sweep
out CL(Ξ) by a family of p− (n− 1) dimensional varieties parametrized by
|L|.

Question. For an exceptional (or very exceptional) singular point L on a
Prym theta divisor, which subvarieties of |L| are dominated by the ir-
reducible components of the normal cone C|L|(X) of the divisor variety
X? That is, identify the “distinguished subvarieties” (in the sense of [F,
Def. 6.1.2, pp. 94-95]) of the linear series |L| ⊂ X.

Notation. For any very exceptional singular point L ∈ Ξ, with the standard
unique expression L = π

∗(M)(B), we use the pair (m,n) to indicate that
m = h

0(M) and n = h
0(L). Thus n ≥ 2 is even, n

2 < m ≤ n, and m

is the largest dimension of an isotropic subspace of H0(L) for the pairing
β : H0(L)×H

0(L) → T
∗
0 (P ).

Question. What is the basic geometry associated with each numerical type
(m,n) of a very exceptional singularity, and what degeneracies can occur?

Remark on (n − 1, n). In this case X must be smooth at every point of
|L|− (π∗|M |+B). (Indeed, following [S-V6], if D ∈ |L| is a singular point of
X then there is at least an isotropic P1 through D. But a line in |L| ∼= Pn−1

must meet π∗|M |+B ∼= Pn−2, and hence in fact be contained π
∗|M |+B.)

Consider the irreducible component C1 of the normal cone C|L|(X) that
dominates |L|, and the map from C1 to TL(P ). By the arguments in the
last part of the proof of Theorem 2 in the previous section, for each smooth
point D of X in |L|, the linear map from the fiber over D in C1 to TL(P )
is an isomorphism onto a codimension n − 1 subspace V ⊂ TL(P ) and
in this case the image subspace V cannot vary with D. It follows that



16 ROY SMITH AND ROBERT VARLEY

C1 = |L|×V ⊂ |L|×TL(P ), generalizing the observed behavior for the cubic
3-fold case (for which P(V ) is the line � on the cubic 3-fold in P4).

Remarks on (3, 4). It is natural to ask for some other cases in which (3, 4)
occurs, besides that of intermediate Jacobians of cubic threefolds. Following
[B2, Rem. 6.27, pp. 377-378], let W ⊂ Pd−1 be an odd dimensional cubic
hypersurface containing a linear subspace Pd−4, with d ≥ 5. For d = 5
this is the cubic threefold case, with a marked line. But for d ≥ 7 such a
cubic hypersurface is singular. So assume that the blow up �W of W along
the Pd−4 subvariety is smooth, and moreover that the degree d discriminant
curve C ⊂ P2 is smooth. Then [B2] there is an étale double cover π : �C → C

for which the Prym variety is isomorphic to the intermediate Jacobian of
�W .

We have undertaken a preliminary investigation for cubic fivefolds P3 ⊂

W ⊂ P6, i.e. d = 7. The theta divisor then has an irreducible 5 dimensional
family of very exceptional triple points, expressible as π∗(g27) + B where B

lies over a divisor in the linear series |OC(2)| cut by conics on the plane
septic curve C. We hope to obtain a Torelli result by using the tangent cone
at a general such triple point.

Question. For the Prym variety (P,Ξ) of a connected étale double cover
π : �C → C of a nonhyperelliptic smooth curve C, are all the tangent cones
of Ξ irreducible?

Remark. Casalaina-Martin [CM, Cor. 6.2.4, p. 200] has shown that the Prym
canonical model of C (assumed nonhyperelliptic) is always contained in
the projectivized tangent cone PCL(Ξ) (translated to Prym canonical space
PT0(P ) ∼= Pp−1) when h

0(L) ≥ 4, and never in the (2, 2) case.

6.2. Examples of nondegeneracy.

6.2.1. Example (irreducible normal cone over an exceptional singularity).

Consider a nonhyperelliptic smooth curve C with distinct theta character-
istics M1 and M2 such that |M1| and |M2| are base point free pencils. Let
η = M1 ⊗M

∗
2 and let π : �C → C be the corresponding étale double cover.

Then the line bundle L = π
∗(M1) = π

∗(M2) on �C defines an exceptional
singularity of the Prym theta divisor Ξ ⊂ P . H

0(L) ∼= H
0(M1) ⊕H

0(M2)
is 4-dimensional, and forming a basis for H

0(L) by using a basis for each
H

0(Mi), Mumford’s 4×4 skew-symmetric matrix of linear forms has a 2×2
block of 0’s in the upper left and lower right. Since the upper right 2 × 2
block is formed from the cup product H

0(M1) × H
0(M2) → H

0(ΩC(η)),
the linear forms appearing as the 4 entries there are linearly independent
(since |M1| and |M2| are distinct base point free pencils). It follows that
the only singular points in |L| ∼= P3 of the divisor variety X are the points
of the 2 lines π∗|Mi|. By the elementary dimension estimate in the Remark
at the end of section 4, the normal cone C|L|(X) is irreducible of dimension
p = dim(P ) and is set-theoretically equal to the normal space N|L|(X).
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6.2.2. Example (variable image from the smooth points over a very excep-

tional singularity). We will construct a very exceptional singularity of nu-
merical type (4, 6) to show that (in contrast to the (n − 1, n) case) it is
possible for the image subspace of the Abel Prym differential on the fibers
of N|L|(X) over the smooth points of X in |L|, to vary in TL(P ). For the
example we will produce a nonhyperelliptic smooth curve C having vanish-
ing theta nulls M1,M2 such that h0(M1) = 4 and |M2| is a base point free
pencil. Then with η = M1 ⊗ M

∗
2 and L = π

∗(M1) = π
∗(M2) on �C, we

will get similarly to the previous example, a 6 × 6 skew-symmetric matrix
of linear forms with a 4× 4 block of 0’s in the upper left and a 2× 2 block
of 0’s in the lower right. We claim that the 8 linear forms appearing in the
4× 2 upper right block are linearly independent.

Thus we need to check that we get maximal rank (4 · 2 = 8) for the cup
product H0(M1)⊗H

0(M2) → H
0(M1 ⊗M2). Starting with the base point

free pencil |M2| on C, consider the resulting surjection OC ⊗H
0(M2) → M2

from a trivial rank 2 vector bundle to the line bundleM2; cf. [ACGH, p. 126].
The kernel line bundle is isomorphic toM∗

2 , so tensoring with the line bundle
M1 and taking global sections we get:

0 → H
0(M1 ⊗M

∗
2 ) → H

0(M1)⊗H
0(M2) → H

0(M1 ⊗M2) → ...

Hence if M1 � M2 has the same degree as M2, then H
0(M1 ⊗M

∗
2 ) = 0 and

the cup product linear map is injective.
One way to carry out the construction is as follows. Take any non-

hyperelliptic smooth curve C0 of genus 4 with a vanishing theta null M .
Then we will choose an appropriate order 8 subgroup G = �η0, α, β� of 1/2-
periods on C in order to carry out the construction. Namely, reducing an
integral symplectic basis for H1(C,Z) modulo 2 to equate H1(C,Z/(2)) ∼=
(Z/(2))g × (Z/(2))g and express each 1/2-period as two rows of 0’s and 1’s,
let

η0 =

�
0 1 0 0
0 0 0 0

�
, α =

�
0 0 1 0
0 0 0 0

�
, β =

�
1 0 0 0
1 0 0 0

�

Of course there do exist nonhyperelliptic smooth curves of genus 4 with a
vanishing theta null. What is convenient is that for such a curve C0 there
is exactly 1 vanishing theta null M (even theta characteristic with h

0
> 0),

|M | is a base point free pencil, and all the odd theta characteristics are
nonsingular (i.e. h

0 = 1). Now consider the 8 distinct theta characteristics
{M(σ) | σ ∈ G}. Four of them are even:

M =

�
0 0 0 0
0 0 0 0

�
,

�
0 1 0 0
0 0 0 0

�
,

�
0 0 1 0
0 0 0 0

�
,

�
0 1 1 0
0 0 0 0

�
;

and four of them are odd:

A =

�
1 0 0 0
1 0 0 0

�
,

�
1 1 0 0
1 0 0 0

�
,

�
1 0 1 0
1 0 0 0

�
,

�
1 1 1 0
1 0 0 0

�
.
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Now pass to the étale double cover π0 : C1 → C0 defined by η0, and
pull back G and the theta characteristics {M(σ)}. Thus consider on C1 the
order 4 pulled-back group �G of 1/2-periods and the four pulled-back theta
characteristics. Thus �G is generated by η1 = π

∗
1(α) and β̃ = π

∗
1(β), and we

label the theta characteristics �A = π
∗
1(A) and �M = π

∗
1(M).

Now we have:

h
0( �A) = 2, h

0( �A(η1)) = 2, h
0(�M) = 2, h

0(�M(η1)) = 0.

Next pass to the étale double cover π1 : C = C2 → C1 defined by η1. Let
M1 = π

∗
2( �A), M2 = π

∗
2(�M), and let η = π

∗
2(β̃). We now have h

0(M1) =
4, h0(M2) = 2, and M1(η) = M2.

So finally for π : �C → C defined by η, the line bundle L = π
∗(M1) on

�C has a 6 × 6 skew-symmetric matrix of linear forms with a 4 × 4 block of
0’s in the upper left, a 2 × 2 block of 0’s in the lower right, and 8 linearly
independent linear forms in the 4× 2 upper right block.

It remains to explain why it follows that the images vary over the smooth
points. Choose a basis {s0, ..., s3} for H

0(C,M1), and a basis {s4, s5} of
H

0(C,M2), and consider {s0, ..., s5} as a basis for H
0( �C,L), (identifying

the sections with their pullbacks). Denote the corresponding coordinates on
|L| ∼= P5 by z0, ..., z5. Then π

∗(|M1|) = {z4 = z5 = 0} ∼= P3 is the largest
linear subspace of |L| ∩ Sing(X). Hence that intersection cannot be all of
P5, and thus has dimension at most 4. Then the smooth points of X are
dense in |L| − π

∗(|M1|) ∼= P5 − P3 = {(z4, z5) �= (0, 0)}. In particular the
projection P5 − P3 → P1, taking (z0, ..., z5) to (z4, z5) is not constant on
points of |L| − Sing(X).

If we denote the last two columns of the Mumford-Kempf matrix of linear
forms by v and w, then at every point of |L|−π

∗(|M1|), the image of ϕ∗ has
codimension at most 5 in TL(P ), and is contained in the codimension 4 base
locus of the entries of the column of linear forms: z4v + z5w. If (z4, z5) and
(z̃4, z̃5) are not proportional, the intersection of the base loci of z4v + z5w

and of z̃4v + z̃5w has codimension 8, hence cannot contain the image of ϕ∗
at any point of |L| − π

∗(|M1|).

Hence if D,E are points of |L| that are smooth on X and have last two
coordinates (z4, z5) and (z̃4, z̃5) that are not proportional, then the images
of ϕ∗ at D and E are distinct. In fact a point of |L| is smooth on X if and
only if the image of ϕ∗ has codimension 5, so we can choose D and E as the
points with coordinates (1, 0, 0, 0, 0, 1) and (1, 0, 0, 0, 1, 0) in |L| ∼= P5. By
similar reasoning one can see that the intersection |L| ∩ Sing(X) consists
of just two components, the union of π∗(|M1|) : {z4 = z5 = 0} ∼= P3, and
π
∗(|M2|) : {z0 = ... = z3 = 0} ∼= P1.
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7. A degenerate example

In this section we show by example that for an exceptional, but not very
exceptional, singular point L of a Prym theta divisor Ξ the unique irre-
ducible component of the normal cone C|L|(X) of the divisor variety X that
dominates |L| need not always map onto an irreducible component of the
tangent cone CL(Ξ). In particular, the normal cone C|L|(X) can be reducible
in case (3).

First we describe the simplest possible skew symmetric matrix of linear
forms that would lead to this behavior. Then we show that this matrix
can occur; the example is constructed from a rather special kind of trigonal
genus 6 smooth curve C and étale double cover.

Proposition 1. Let π : �C → C be a connected étale double cover of a

nonhyperelliptic smooth projective curve C of genus g. Consider the divisor

variety X ⊂ �C(2g−2) and the parametrization ϕ : X → Ξ of the Prym theta

divisor Ξ ⊂ P . Assume that L ∈ Ξ is a point with h
0( �C,L) = 4 for which

Mumford’s skew symmetric matrix of linear forms can be expressed as:




0 0 x y

0 0 y z

−x −y 0 0
−y −z 0 0



 , with x, y, z linearly independent on TL(P ).

Then L is an exceptional singular point of Ξ and the following properties

hold.

(a) The tangent cone CL(Ξ) has Pfaffian equation xz − y
2 = 0 and L is a

rank 3 double point on Ξ at which RST holds. In particular, L is not a very

exceptional singular point.

(b) The normal cone C|L|(X) has exactly 2 irreducible components: C1 sup-

ported over all of |L| ∼= P3 and C2 supported over a smooth quadric surface

Q ⊂ P3. Now consider the mapping from each of these two p-dimensional

varieties C1, C2 to CL(Ξ) ⊂ TL(P ) ∼= Cp induced by restriction of the surjec-

tive morphism C|L|(X) → CL(Ξ). (We have set p = g − 1 as usual.)

(1) C1 ⊂ |L|×Cp is equal to the product of |L| and a codimension 3 vector

subspace E ⊂ Cp, so that the map from C1 to Cp is projection to the 2nd

factor of the product. In particular, the image in TL(P ) of the injections

from the fibers in C1 over the points D ∈ |L| does not vary with D.

(2) The map from C2 is onto CL(Ξ).

Proof. First, L is an exceptional singular point by [S-V5, Lemma 2.2 (ii),
p. 450]. More precisely, if {s1, ..., s4} is any basis forH0( �C,L) with respect to
which the skew-symmetric 4×4 matrix of linear forms has the form displayed
above in the assumption, then the span of the 1st two basis vectors {s1, s2}
is visibly an isotropic subspace W for β and so there is a line bundle M

on C and a vector subspace Λ ⊂ H
0(C,M) such that L ∼= π

∗(M)(B), for



20 ROY SMITH AND ROBERT VARLEY

some divisor B ≥ 0 on �C, and W = π
∗(Λ) · u where div(u) = B. Thus

h
0(M) ≥ 2 and L is an exceptional singularity of Ξ. (In fact, W ⊂ H

0(L) is
a maximal isotropic subspace for β since the linear forms x, y in the first row
are linearly independent and y, z in the second row are linearly independent.
Thus h0(M) = 2; cf. [S-V5, Lemma 2.3 (ii), p. 451]. Similarly, for the span
W2 of the last two basis vectors {s3, s4}, there exists another line bundle
M2 on C with h

0(M2) = 2 and L ∼= π
∗(M2)(B2), W2 = π

∗(H0(C,M2)) ·u2.)

Next, the conclusions stated in part (a) are immediate. Namely, the
Pfaffian of the skew-symmetric 4 × 4 matrix is xz − y

2, which is a rank 3
quadratic form on TL(P ) ∼= Cp. In particular, since the Pfaffian polynomial
is not identically zero, it is an equation for the tangent cone CL(Ξ), RST
holds, and L is not a very exceptional singularity of Ξ.

Finally, everything in part (b) will follow by direct computation with the
matrix of linear forms. With respect to the basis for H

0(L), consider the
point D = (a, b, c, d) ∈ P3 ∼= |L|. Then the 4 linear forms appearing in the
column vector





0 0 x y

0 0 y z

−x −y 0 0
−y −z 0 0



 ·





a

b

c

d



 =





cx+ dy

cy + dz

−ax− by

−ay − bz





define in TL(P ) ∼= T0(P ) ∼= Cp the image subspace ϕ∗(TD(X)) of the Abel
Prym differential at D.

The span of the linear forms in this column vector is not all of Cx+Cy+Cz
if and only if ad− bc = 0. Indeed, expressing the 4 linear forms in terms of

the linearly independent ones x, y, z gives the matrix





c d 0
0 c d

−a −b 0
0 −a −b



, and

the rank of this 4× 3 matrix is < 3 iff ad− bc = 0.

Let C1 be the irreducible component of the normal cone C|L|(Ξ) that
dominates |L|. Since for ad − bc �= 0, the image ϕ∗(TD(X)) ⊂ TL(P ) is
constantly the codimension 3 subspace E defined by x, y, z, this component
C1 is |L|×E and does not map onto an irreducible component of the tangent
cone CL(Ξ). Therefore, there must be another irreducible component of the
normal cone that maps onto an irreducible component of CL(Ξ).

Now when the point D of |L| ∼= P3 lies on the smooth quadric surface
Q : ad− bc = 0, the 4 linear forms span only a 2-dimensional vector space of
linear forms, so ϕ∗(TD(X)) ⊂ TL(P ) has codimension 2 in the p-dimensional
vector space TL(P ). Thus over Q the fibers of the normal space N|L|(X) are
all (p-2)-dimensional, so there is an irreducible p-dimensional component C2
of N|L|(X) lying over and dominating Q ⊂ |L| (forming a rank p-2 vector
bundle over Q). But the divisor variety X is irreducible p-dimensional, and
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therefore the normal cone C|L|(X) of X along |L| has pure dimension p.
Since we know that there is at least one irreducible component of C|L|(X)
besides C1, and C2 accounts for all of N|L|(X) residually to C1, then C2 must
be an irreducible component of the normal cone and the only one besides
C1.

Having proved the statements we made about the general structure of
C2 with its surjective map to CL(Ξ), we note incidentally the following
explicit structure of the map. If we express a point (a, b, c, d) ∈ Q (the
rank 4 quadric surface ad − bc = 0 in P3 ∼= |L|) as (λ0µ0, λ0µ1, λ1µ0, λ1µ1)
for (λ0, λ1), (µ0, µ1) ∈ P1, then the projection map C2 ⊂ |L| × TL(P ) →

TL(P ) simply sends the (p-2)-dimensional vector space fiber in C2 over
(λ0µ0, λ0µ1, λ1µ0, λ1µ1) to the codimension 2 subspace of TL(P ) ∼= Cp de-
fined by µ0x+ µ1y and µ0y + µ1z. �

Proposition 2. Assume that C is a connected nonhyperelliptic smooth pro-

jective curve of genus g with 2 vanishing theta nulls M1,M2 of the follow-

ing particular form: M1
∼= M0(B1),M2

∼= M0(B2), for effective divisors

B1, B2 and a line bundle M0 such that |M0| is a base point free pencil,

|M1| = |M0| + B1, |M2| = |M0| + B2, and η = B1 − B2 is a nontrivial

half-period. In other words, |M1| and |M2| are distinct vanishing theta null

pencils on C with the same moving part |M0| and distinct base divisors B1

and B2.

Let π : �C → C be the étale double cover of C defined by η = B1−B2, and

consider L = π
∗(M1) on �C. Then L ∈ Ξ has h

0( �C,L) = 4 and Mumford’s

skew symmetric matrix of linear forms can be expressed in the form displayed

in Proposition 1.

Proof. Since M1
∼= M2(η) on C and π

∗(η) = 0 on �C by construction,
π
∗(M1) ∼= π

∗(M2). Therefore, by the projection formula,H0(L) ∼= H
0(M1)⊕

H
0(M2) has dimension 2 + 2 = 4. (In detail, H

0(L) ∼= H
0(π∗(M1)) ∼=

H
0(π∗π∗(M1)) ∼= H

0(M1⊗π∗(O �C))
∼= H

0(M1⊗ (OC ⊕OC(η)) ∼= H
0(M1)⊕

H
0(M2).)

Now the determination of the skew symmetric 4×4 matrix of linear forms
is just like [S-V3, Ex. 2.18, p. 492] and [S-V4, Prop. 3.6, p. 246], except
that everything has been pre-arranged here so that the rank of the Pfaffian
quadratic form is 3, not 4. Namely, the upper right 2× 2 block Λ of linear
forms comes from the cup product H

0(M1) × H
0(M1(η)) → H

0(ΩC(η)).
If the two base divisors B1 and B2, for |M1| and |M2| = |M1(η)| resp.,
are defined by sections βi of OC(Bi), i = 1, 2, then the section β1β2 of
OC(B1 + B2) is a common factor of all the entries of Λ. Dividing out
β1β2, we have the 2× 2 block of linear forms coming from the cup product
H

0(M0) × H
0(M0) → H

0(M2
0 ). Now for any pencil |M0|, the linear map

H
0(M0) ⊗C H

0(M0) → H
0(M2

0 ) has rank exactly 3 since projectively the
morphism P1 × P1 → PH0(M2

0 ) given by addition of divisors in the pencil,
has finite fibers. Finally, if s, t are a basis for H0(M0) then the matrix of cup



22 ROY SMITH AND ROBERT VARLEY

products is

�
s
2

st

ts t
2

�
=

�
s
2

st

st t
2

�
. Thus Λ =

�
s
2

st

st t
2

�
· β1β2 =

�
x y

y z

�
,

as desired. �
Proposition 3. There exists a (nonhyperelliptic) trigonal connected smooth

projective curve C of genus 6 with 2 vanishing theta nulls M1,M2 that satisfy

all the properties postulated in Proposition 2.

Proof. We will construct C as the normalization of a degree six plane curve
with certain singularities and special tangent lines. First, two lemmas.

Lemma 1. Let Y ⊂ P2 be an irreducible sextic curve with a triple point P
and a double point Q, both ordinary, and no other singularities. Let C → Y

be the normalization. Then C is a connected smooth projective curve of
genus 6 and is trigonal, nonhyperelliptic. Moreover, for any line � through
Q that is tangent to Y at 2 smooth points a and b, there is an associated
vanishing theta null pencil on C with base divisor a+ b.

Proof. C is a smooth projective curve by construction, since the normal-
ization of any projective curve is a smooth projective curve. C is irre-
ducible since Y is, hence C is connected. Now we compute the genus of
C. At an ordinary plane curve singularity of multiplicity m, the “diminu-
tion of the genus” is given by the formula δ = m(m−1)

2 . Thus δP = 3 and
δQ = 1, and hence g(C) = 10 − (3 + 1) = 6 (since Y has arithmetic genus
pa(Y ) = (6− 1)(6− 2)/2 = 10).

The pencil of lines through P in the plane cut a moving degree 3 linear
series on Y . More precisely, if p1, p2, p3 are the 3 points of C mapping to P

in Y (the “branches” of Y at P ), then |OC(1)(−p1−p2−p3)| is a base point
free pencil of degree 3 on C, where OC(1) on C is the pullback of the line
bundle OY (1) on Y . Since C admits a g

1
3 (degree 3 pencil), C is trigonal;

and C is nonhyperelliptic since this g13 is base point free (and g > 2).
Now assume that � ⊂ P2 is a line through Q that is bitangent to Y , at

distinct smooth points a and b. Set B = a + b on C, and let G denote
the g

1
3 line bundle OC(1)(−p1 − p2 − p3). Then consider the degree 5 line

bundle M = G(B) on C. We must show that M⊗2 ∼= Ω1
C , h

0(M) = 2, and
|M | = |G|+B (= |g13|+B, the g

1
3 pencil plus base divisor B).

On one hand, M⊗2 ∼= OC(2)(−2p1−2p2−2p3)(2a+2b), and using the line
PQ to get the divisor 2(p1+p2+p3+q1+q2+r) in |OC(2)|, we can represent
M

⊗2 by the divisor class 2(p1+p2+p3+q1+q2+r)−(2p1+2p2+2p3)+(2a+
2b) = 2q1 +2q2 +2r+2a+2b. On the other hand, the canonical series |Ω1

C |

is cut by the special adjoints, i.e. the plane cubics which are singular at P
and contain Q, residual to the assigned base divisor 2p1+2p2+2p3+q1+q2,
where q1, q2 are the 2 points of C mapping to Q in Y (the “branches” of Y at
Q). (In particular, the degree checks: 3·6−8 = 10.) Thus take for an adjoint
cubic, the line � plus twice the line through P and Q. The divisor on C that
this cubic curve cuts is (q1+q2+2a+2b)+2(p1+p2+p3+q1+q2+r), where
r is the 6th point of intersection of PQ with Y . Subtracting the assigned
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base divisor gives the canonical divisor: (2(p1 + p2 + p3) + 3(q1 + q2) + 2r+
2a + 2b) − (2p1 + 2p2 + 2p3 + q1 + q2) = 2q1 + 2q2 + 2r + 2a + 2b. Thus,
M

⊗2 ∼= Ω1
C .

To show the rest, since h
0(G) = 2 and |G| + B ⊂ |M |, it will suffice to

check that h0(M) < 3. By Clifford’s theorem, h0(M) ≤ 3. So consider the
possibility that h0(M) = 3. Then the net |M | must be base point free since
otherwise, by subtracting a base point we could get a g

2
4 and C would be

hyperelliptic, contradiction. Thus |M | would have to be a base point free
g
2
5 and map C onto a plane quintic curve. This map would have to be an
isomorphism from C to a smooth plane quintic, since a plane quintic has
arithmetic genus 6 and C is smooth of genus 6. However, a smooth plane
quintic curve is never trigonal (since any degree 3 effective divisor D on
a smooth plane quintic imposes 3 independent linear conditions for plane
conics to cut a divisor ≥ D, so D cannot move in a linear series). �

Lemma 2. There exists an irreducible sextic curve Y ⊂ P2 with a triple
point P and a double point Q, both ordinary, and no other singularities,
with the property that there are 2 distinct lines through Q each of which is
tangent to Y at 2 smooth points.

Proof. We will work in P2 with a point Q, 2 distinct lines through Q, the
proposed points of bitangency, a point P not on the 2 lines, and apply
Bertini’s theorem to get the existence of Y . Let’s begin in the affine plane
with Q = (0, 0), the x-axis and the y-axis, points (a1, 0), (b1, 0) on the x-
axis and points (0, a2), (0, b2) on the y-axis, and the point P = (c, c). Now
consider the affine plane sextics with the following types of equations: A =
(xα1β1)2, B = (yα2β2)2, and C = xy·{h(x, y)}, where α1 is an affine equation
for the line through (a1, 0) and (c, c), β1 is an affine equation for the line
through (b1, 0) and (c, c), (similarly for α2, β2), and {h(x, y)} are the affine
quartics with at least a triple point at (c, c). Now homogenize and consider
the linear system generated by A,B and C. Then there are no base points
in P2 outside the assigned ones ((a1, 0), (b1, 0), (0, a2), (0, b2), Q = (0, 0), and
P = (c, c) in the affine plane), and all members Y of this linear system of
sextic curves in P2 have the property that P is a singular point of multiplicity
≥ 3, Q is a singular point of multiplicity ≥ 2, and the 2 affine coordinate
axes are tangent to Y at (a1, 0) and (b1, 0), (0, a2) and (0, b2). For the local
conditions: that P is an ordinary triple point, that Q is an ordinary double
point, and that (a1, 0), (b1, 0), (0, a2), (0, b2) are all smooth points, it is clear
that there are members satisfying these conditions (from general xyh ∈ C),
and hence that the general member satisfies all of these local conditions.
Then Bertini does the rest: irreducible and no unassigned singularities. �

Now we complete the proof of Proposition 3. Take an irreducible plane
sextic curve Y as in Lemma 2, and let C be the normalization, which is
trigonal as in Lemma 1. Let M0 be the g

1
3 line bundle (denoted by G in the

proof of Lemma 1), so that |M0| is a base point free pencil on C. Then, if
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the 2 bitangent lines through Q are tangent to Y at smooth points a1, b1

and a2, b2 resp., set B1 = a1 + b1 and B2 = a2 + b2 on C, and finally
let Mi = M0(Bi) for i = 1, 2. By Lemma 1, each |Mi| = |M0| + Bi is
a vanishing theta null pencil with base divisor Bi. The only thing that
remains to be checked is that the half-period η = B1 − B2 is nontrivial.
By construction, B1 and B2 are distinct effective divisors of degree 2 on C.
Since C is nonhyperelliptic, B1 and B2 cannot be linearly equivalent. �

Corollary (of Propositions 1-3). There exists a genus 6 smooth trigonal
curve C with an étale double cover π : �C → C for which the theta divisor Ξ
of the Prym variety has an exceptional, but not very exceptional, singular
point L such that the surjective map

C|L|(X) → CL(Ξ)

from the normal cone C|L|(X) of the divisor variety X along |L|, to the
tangent cone CL(Ξ) of the Prym theta divisor at L, has the following struc-
ture. The tangent cone CL(Ξ) is irreducible and is parametrized by the
part of C|L|(X) supported over |L| ∩Sing(X), not by the unique irreducible
component that dominates |L|. In particular, the normal cone C|L|(X) is
reducible. �

Remark. The Prym variety appearing in the Corollary is a nonhyperelliptic
genus 5 Jacobian (by results of Mumford and Recillas, see [M], [Re], and
also [B1, Thm. 4.10, p. 170]), and the rank 3 double point L on the theta
divisor is a vanishing theta null.

Appendix

The Riemann Singularity Theorem after Kempf and Mumford

Based on the notes “Topics on Riemann Surfaces” [K2] from a seminar
presented by George Kempf at the Mathematics Institute of UNAM during
August and September 1973.

In spite of the many proofs in the literature today of Riemann’s singu-
larity theorem, we believe the following notes describing the original ap-
proach of Mumford and Kempf will interest a number of readers. For one
thing they contain the arguments, which were omitted from the version of
Kempf’s thesis published in his Annals paper [K1], that in addition to its
tangent cone, the theta divisor itself has local determinantal equations. Sec-
ondly, the notes of Kempf’s unpublished seminar which these very closely
follow, are written in relatively elementary language. The present authors
feel that the resulting exposition by Kempf is a candidate for the clearest
treatment of Riemann’s singularity theorem available and we want to take
this opportunity to publicize it more widely. Although we have not been
able to preserve the elegant brevity of Kempf’s original words, we hope the
clarity of the argument is not entirely lost. The complete arguments were
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published by Kempf, in a more abstract form, in the monograph [K3], now
unfortunately out of print.

A primary tool for studying a compact Riemann surface C of genus g,
is the family of Abel maps α : C(i) → Pic

i(C), where C
(i) is the ith sym-

metric power of C and Pic
i(C) ∼= J = H

0(C;K)∗/H1(C;Z) is its Picard or
Jacobian variety. Recall the map α : C(i) → Pic

i(C) takes a divisor D to
the line bundle O(D). As a map to H

0(C;K)∗/H1(C;Z), α sends D to the
linear function on one-forms defined by integration from D0 to D, where D0

is a fixed divisor of degree i. As an example of its importance, the Riemann
Roch problem for D, is equivalent to computing the rank of the derivative
of α at D.

In particular, a fundamental problem is to relate analytic properties of
C to geometric invariants of the images α(C(i)) = W

i = the subvariety in
Pic

i(C) of effective line bundles of degree i on C. E.g. for i ≤ g−1, one can
show L is a smooth point of W i if and only if h0(C;L) = 1. The Riemann
singularities theorem makes this even more precise when i = g − 1.

For the case i = g − 1, Riemann gave a holomorphic function ϑ defining
the inverse image in H

0(C;C)∗ ∼= complex g space, of W g−1 = the “theta
divisor” of C, and used it to give an extremely useful intrinsic formula for
the multiplicity of W g−1 at a point L representing a line bundle of degree
g − 1 on C. Namely,

Theorem (Riemann). multL(W g−1) = h
0(C;L) = 1 + dim(α−1(L))

Remark. A local equation for W
g−1 near L is determined only up to mul-

tiplication by a unit in the analytic local ring of J at L, but its leading
term, the equation of the tangent cone of W g−1 at L, is determined up to
multiplication by a non zero constant. Hence not only the order, but also
the homogeneous polynomial itself of lowest degree in a local equation for
W

g−1 near L has intrinsic significance, at least as an element of the symmet-
ric algebra on H

0(C;K). Kempf improved Riemann’s numerical result by
giving an intrinsic construction for this homogeneous polynomial of degree
h
0(L), defining the tangent cone of W g−1 at L, as follows.

Theorem (Kempf). Algebraically, the tangent cone in TLJ to W
g−1 at

a point L representing a line bundle of degree g − 1 on C, is defined by

an irreducible polynomial of the form det[XiYj ], where {Xi} is a basis of

H
0(C;L) and {Yj} is a basis of H0(C;K − L). In particular it has degree

h
0(C;L).
Geometrically, the projectivized tangent cone is a reduced irreducible ra-

tional variety with support equal to the union of the spans of the divisors

D in |L| in the canonical space PTLJ of the curve C, and is parametrized

birationally by the projective normal bundle to the fiber α
−1(L) = |L| in

C
(g−1) of the Abel map via the derivative α∗ of that map.
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Remarks. 1) Kempf generalized his result to describe the tangent cones to
all W i, for i ≤ g − 1. In this note we explain first the easier case of W g−1,
and indicate the generalization for i < g − 1 at the end.

2) In particular, the theorem gives the same equation for the tangent cones
to W

g−1 at L and at K − L, as expected.

3) In the case h
0(C;L) = 2, Andreotti and Mayer had previously given the

equation of the quadratic tangent cone to W
g−1.

Indeed Kempf once remarked to us that he discovered his result after
reading their paper, which suggests he understood Lemma 4 pp. 192-193,
and Prop. 8c) pp. 210-211 of [A-M], and their proofs, very well indeed.

With hindsight the discussion in [A-M], Prop. 8c), p. 211, and lemma
4, p. 193, can be summarized as follows. Given a line bundle L on C of
degree g − 1 with h

0(C;L) = 2, the multiplicity of W g−1 at L is 2, and
the homogeneous quadratic Taylor polynomial for ϑ at L vanishes precisely
on the spans of all the divisors D in the linear series |L|, [Prop. 8c), proof:
p. 211].

Moreover let {X1, X2} and {Y1, Y2} be bases of H0(C;L) and H
0(C;K−

L), defining divisors D1, D2 in |L| and E1, E2 in |K−L|. Then XiYj is a one-
form on C representing a homogeneous linear equation for the hyperplane
cutting the divisor Di + Ej on the canonical model of C, and det[XiYj ] =
X1Y1 ·X2Y2 −X1Y2 ·X2Y1, is an equation for the quadric tangent cone Q

to W
g−1 at L, [A-M, lemma 4, proof: p. 193].

Moreover the zero locus of this determinant is doubly ruled, once by the
common zeroes of the entries in each linear combination of the rows, i.e. by
the spans of the divisors in |L|, and once by the common zeroes of the entries
in each linear combination of the columns, i.e. by the spans of the divisors
in |K − L|. In the case examined in [A-M] these are the ruling pencils of a
quadric of rank 3 or 4, given in line -5, p. 191, (with a misprint).

Proof of Kempf’s theorem. By definition the tangent cone to W
g−1 at L is

the leading term of a local equation for W g−1 near L, so the first step is to
find such an equation. Since the Abel map fibers the symmetric products
C

(i) over J with linear projective space fibers, one can add a base divisor so
that all fibers are subspaces of projective spaces of the same dimension, hence
locally, in both the analytic and the algebraic Zariski topologies, all fibers
become subspaces of the same projective space. Then the idea, attributed
by Kempf to Mumford, is to use the most elementary case of elimination
theory to give a determinantal equation for the image of C(g−1) locally near
L.

Recall α : C(2g) → Pic
2g(C) is a locally trivial family of projective spaces

α
−1(L) ∼= Pg, for all L in Pic

2g(C). Moreover, if E = P0 + ... + Pg is a
divisor consisting of g+1 distinct points Pi, then adding E to each effective
divisor of degree g − 1, defines an embedding +E : C(g−1)

�→ C
(2g).
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Moreover the image C
(g−1) + E = {D ∈ C

(2g) : D ≥ E} is the transverse
intersection of the g + 1 smooth subvarieties C

(2g−1) + Pi. Thus for each
L in Pic

g−1(C), the Abel fiber |L| in C
(g−1) is isomorphic to the subspace

|L| + E of the Abel fiber |L ⊗ O(E)| ∼= Pg in C
(2g). Moreover |L| + E is

the subspace of |L⊗O(E)| defined as the common zeroes of the g+1 linear
equations obtained by setting sections of L⊗O(E) equal to zero at each Pi.
At a general L, the g + 1 hyperplanes of |L ⊗ O(E)| ∼= Pg defined by the
points Pi are independent and |L| = empty set. Indeed these hyperplanes
are dependent precisely when L belongs to W

g−1.

Thus locally over a neighborhood U of L ⊗O(E) in J , the smooth vari-
ety C

(2g) is analytically isomorphic to U × Pg, and the smooth subvariety
C

(g−1)+E ∼= C
(g−1) of C(2g), is defined locally in U ×Pg by g+1 transverse

simultaneous equations
�

j aj,k(u)Xj = 0, for 0 ≤ k ≤ g. Here the aj,k are
analytic functions on U and X0, ..., Xg are homogeneous linear coordinates
on Pg. For each u in U , there is a point of C(g−1) + E lying over u if and
only if the matrix [aj,k(u)] is singular. Then in these local coordinates the
image W

g−1 + E ∼= W
g−1, of C(g−1) + E ∼= C

(g−1), is defined as a set near
L ⊗ O(E), by one equation det[aj,k(u)] = 0. Hence, after translation, the
same holds for the variety W

g−1 near L, in Pic
g−1(C).

Next one can use this local equation to compute the degree and some
geometry of the tangent cone to W

g−1 at L, but first we must show this
equation definesW g−1 with the correct, i.e. reduced, scheme structure. Since
W

g−1 is the image of a smooth irreducible variety by a map with connected
fibers, W g−1 is globally irreducible as well as locally analytically irreducible
near every point L. Thus to show the determinant equation is reduced, it
suffices to check that the scheme structure defined by this equation is non
singular at some point. To give more control over these equations we begin
by putting the matrix in simpler form adapted to the dimension of the fiber.

By Abel’s theorem we know the projective linear fiber |L| has dimension
r = h

0(L)−1 ≥ 0. Hence the corank of the numerical matrix [aj,k(L)] equals
r+1 = h

0(C;L). Now apply row and column operations in the analytic local
ring of Pic

g−1 near L. Then [aj,k] reduces to a matrix of analytic functions
with (g − r) ones on the upper left diagonal, all zeroes in the upper right
and lower left blocks, and a square matrix [bj,k] of dimension h

0(C;L) in the
lower right hand corner, with 0 ≤ j, k ≤ r. Moreover all the functions bj,k

vanish at L, and the determinant has at most been multiplied by a unit in
the local ring.

Then C
(g−1) is defined locally near the fiber |L| ∼= {L}×Pr, in U ×Pr, by

the system of r + 1 = h
0(C;L) equations:

�
j bj,k(u)Xj = 0, for 0 ≤ k ≤ r,

where X0, ..., Xr are homogeneous linear coordinates on Pr. Consequently
W

g−1 is defined as a set near L in U by one equation det[bj,k] = 0, where [bj,k]
is an h

0(C;L) by h
0(C;L) matrix of analytic functions on U , all vanishing at

L. Since C
(g−1) → W

g−1 is surjective, dim(W g−1) ≤ dim(C(g−1)) = g − 1.
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Since W
g−1 is defined by one equation, dim(W g−1) ≥ g − 1 as well. Thus

dim(W g−1) = g − 1, and the general fiber |M | of the map C
(g−1) → W

g−1

has dimension zero, thus is a single point.

To show the local equation det[bj,k] = 0 defines W
g−1 with its reduced

structure, we will show the structure it defines for W
g−1 is isomorphic to

C
(g−1) locally over a general point M of W g−1 in U . Choose a point M in

U with h
0(C;M) = 1. Then near M , the diagonalization procedure yields

an equation for W g−1 which is a unit multiple of the previous one, and has
form det[c0,0(u)] = c0,0(u), where C

(g−1) is defined near |M | = {M} by one
equation c0,0(u) · X0, in U × P0. Thus near M , our equation for W

g−1 is
a unit times the equation for C

(g−1) near |M | = {M}, so W
g−1 is indeed

isomorphic to the smooth variety C
(g−1) locally over M .

Since the equation det[bj,k] defines W g−1 as a reduced scheme near L, we
can use it to compute the tangent cone by finding its leading term. Since the
constant term of every bj,k is zero, all Taylor polynomials of det[bj,k] of degree
< h

0(C;L) are zero, and the first possibly non zero term is det[Bj,k] where
Bj,k is the linear term of bj,k. The easy direction of Riemann’s theorem,
that multL(W g−1 ≥ h

0(C;L), follows from this fact.

To deduce the other direction, that multL(W g−1) ≤ h
0(C;L), it suffices

to show the polynomial det[Bj,k] is not identically zero. Since the terms
Bj,k are linear functions on PTLJ , det[Bj,k] is a homogeneous polynomial
of degree h

0(C;L) on PTLJ . To show it is not zero, we claim it vanishes
only on a subset of codimension one in PTLJ

∼= Pg−1, namely on the image
under the differential of the Abel map, of the (g− 2)-dimensional projective
normal bundle to the fiber |L| in C

(g−1).

To see that, note that to compute that normal bundle, we compute the
tangent bundle to C

(g−1) along |L| and take the part normal to |L|. Since
C

(g−1) is defined by the equations
�

j bj,k ·Xj = 0, 0 ≤ k ≤ r, in U×Pr, with
|L| ∼= {L} × Pr, the product rule for derivatives implies this normal bundle
is the subset of PTLJ × Pr defined by the r + 1 equations

�
j Bj,k ·Xj = 0,

0 ≤ k ≤ r, where X0, ..., Xr are homogeneous coordinates on Pr.

Hence by the same argument given above for the zero locus of det[bj,k],
det[Bj,k] vanishes precisely on the image in PTLJ of the projectivized normal
bundle to |L| in C

(g−1). Since that projective bundle has dimension g − 2,
its image in PTLJ

∼= Pg−1 is a proper subvariety, and thus det[Bj,k] is not
identically zero. �

Corollary. The tangent cone to W
g−1 at a point L, is a reduced irreducible

rational variety of degree h0(C;L), whose support is the image of the normal
cone to the fiber |L| in C

(g−1), via the derivative of the Abel map.

Proof. The fact that the normal cone is irreducible implies the same for its
image the tangent cone. Next, the map from the rational normal cone to the
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tangent cone is birational by the same argument as given above for the map
C

(g−1) → W
g−1. Hence the tangent cone is also rational and reduced. �

The ideas in this first part of the proof are attributed by Kempf to Mum-
ford, [K2] and [K3, p. 160]. This already gives a complete proof of the
classical Riemann singularity theorem, on the multiplicity of W g−1, i.e. the
degree of the tangent cone.

To complete the proof of Kempf’s theorem, next we want to make explicit
the set theoretic support of the projective tangent cone to W

g−1 at L, and
give Kempf’s intrinsic equation for that tangent cone.

Lemma. For any d ≥ 1, any line bundle L of degree d on C, and any
divisor D in |L|, the image under the derivative of the Abel map, of the
projective normal space to |L| in C

(d) at D, is the span of the divisor D on
the canonical model of C in PTLJ

∼= PH0(C;K)∗.

Proof. For a divisor D of distinct points, this follows from the fundamental
theorem of calculus applied to the entries in the abelian integral form of the
Abel map. It is implied for general D, (as well as the dimension of the span
of D), by the exactness of the sequence on page 30 of Mattuck and Mayer
[M-M]. The exactness is proved there, and is proved to be equivalent to the
Riemann Roch theorem for D. �
Corollary. The image under the derivative of the Abel map, of the projec-
tive normal bundle to |L| in C

(d), is the union of the spans of the divisors
D in |L|, on the canonical model of C in PTLJ .

The algebraic part of Kempf’s theorem is contained in the following propo-
sition.

Proposition. The equation of the tangent cone to W
g−1 at L is given by

det[XiYj ] = 0, where {Xi} is a basis for H
0(C;L) and {Yj} is a basis for

H
0(C;K − L). The polynomial det[XiYj ] is irreducible.

Proof. If non zero, this polynomial has the same degree as the reduced
and irreducible tangent cone, so if it also vanishes on that cone it must
be irreducible. If Di in |L| is the divisor of Xi = 0, then the entries of
the ith row of the matrix [XiYj ] form a basis for the one forms vanishing
on Di, hence as linear functions on canonical space PTLJ they cut out the
span of Di. In particular that row becomes zero in the numerical matrix
obtained by evaluating [XiYj ] at any point p of the span of Di, so the matrix
[XiYj(p)] is singular for any p in that span. Similarly if D is any divisor
of |L|, i.e. the divisor of any linear combination of the Xi, then that same
linear combination of the rows of [XiYj ] becomes zero at any point p of the
span of D. Thus [XiYj(p)] is singular if p belongs to the span of any divisor
D in |L|.

Since the polynomial det[XiYj ] vanishes on the reduced and irreducible
tangent cone of degree h0(C;L) toW g−1 at L, the polynomial must be either
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identically zero, or precisely the equation of degree h
0(C;L) of that cone.

To see it is not identically zero, let p be a point where it vanishes. Then
some linear combination of the rows of [XiYj(p)] is zero. Then p belongs to
the common zero locus of the entries in that vector of one forms, which are a
basis for the one forms vanishing on the zero divisor D of the corresponding
linear combination of the Xi. Thus p does lie on the span of some divisor D
of |L|. Since the union of these spans is a hypersurface in canonical space,
det[XiYj ] does not vanish identically. �
Remarks. We want to outline Kempf’s achievement of generalizing these
results to all W i with i ≤ g − 1.

Theorem (Kempf). Consider W
i with its reduced scheme structure. Al-

gebraically, the tangent cone in TLJ to W
i at a point L representing an

effective line bundle of degree i on C, is defined by a prime ideal generated

by the maximal minor determinants of the matrix [XjYk], where {Xj} is a

basis of H0(C;L) and {Yk} is a basis of H0(C;K − L). The multiplicity of

W
i at L equals the binomial coefficient

� h1(L)
dim|L|

�
.

Geometrically, the projectivized tangent cone to W
i at L is a reduced ir-

reducible rational variety with support equal to the union of the spans of

the divisors D in |L| in the canonical space PTLJ of the curve C, and

is parametrized birationally by the projective normal bundle to the fiber

α
−1(L) = |L| in C

(g−1), of the Abel map.

Proof (sketch). When i < g − 1, the technique of adding a base divisor and
performing row and column operations yields a matrix, no longer square,
of local analytic functions whose maximal minors vanish exactly on the set
theoretic imageW i of the Abel map on C

(i). An argument similar to the case
i = g − 1 shows the scheme structure defined on W

i by these determinants
is again isomorphic to the smooth scheme structure of C(i) near a point L of
W

i over which the fiber of the Abel map is a single point. It follows as before
that this determinantal scheme structure on W

i is generically reduced, but
since W

i is not a hypersurface when i < g − 1, it is no longer clear it is
actually reduced.

At this point Kempf invokes “unmixedness” results for determinantal vari-
eties, which he attributes originally to Macaulay and which he also reproves,
to deduce that the given determinants do define W i with its reduced scheme
structure. It follows that the tangent cone of W i is defined by the ideal of
homogeneous leading terms, not however of just the generators of the ideal
for W

i, but of every element of that ideal. Kempf uses Macaulay’s results
to overcome that problem as well and show that it suffices to consider only
the leading terms of the given determinantal generators as follows.

First he considers, as in the case i = g − 1, the matrices whose entries
are the linear terms of the entries in the matrices defining W

i. The max-
imal minors of these matrices give some of the initial homogeneous forms
belonging to the ideal defining the scheme structure of the tangent cone to
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W
i at L. Moreover, as before, these maximal minors of matrices of linear

forms define the image of the projective normal bundle to |L| in W
i, under

the derivative of the Abel map, which by the universal property of blowing
up equals the tangent cone to W

i, at least set theoretically.

Since these minors are only a special subset of the homogeneous generators
of the ideal of the tangent cone, it is possible that the actual tangent cone
is a closed subscheme of the scheme structure they define. Repeating the
arguments for the determinantal equations of W i, it follows again that the
scheme structure on TLW

i defined by the maximal minors is generically
reduced. Invoking the unmixedness results again implies that these minors
define the reduced scheme structure on TLW

i. Since this is the smallest
possible scheme structure on TLW

i and the tangent cone is a subscheme
of this one, this is indeed the actual tangent scheme structure. Thus the
tangent cone to W

i is reduced, and is the birational image of the irreducible
and rational projective normal bundle to |L| in C

(i), via the derivative of
the Abel map.

To give explicit equations for the tangent cone at any line bundle L of
degree i < g−1, Kempf again considers bases {Xj} of H0(C;L), and {Yk} of
H

0(C;K−L). Let {Tj} be another basis of H0(C;L). Then the theorem of
Mattuck and Mayer implies the projective normal bundle of |L| in C

(i) maps
by the derivative of the Abel map, and bundle projection, isomorphically to
the smooth subscheme of PTLJ × |L| defined by the equations {

�
j(XjYk) ·

Tj = 0, all k}.

To show the common zero scheme in PTLJ × |L| of the equations {fk =�
j(XjYk)Tj = 0 for all k} is smooth, we calculate the differentials on the

product of the associated vector spaces. Each function fk =
�

j(XjYk)Tj is

bilinear on the product TLJ ×H
0(L), hence linear in each factor. Thus the

partial differential in each factor direction equals that same linear function.
In particular, at a point (a, b) in the product, the partial differential of fk in
the TLJ direction is the linear function Lk =

�
j(XjYk)bj = (

�
j bjXj) · Yk.

In particular it is independent of a. These linear functions Lk are indepen-
dent in H

0(C;K) because the sections Yk are independent in H
0(C;K−L).

Consequently, the tangent cone to W
i at L is the image of the projection

of this subscheme into PTLJ , i.e. the set of points where all h0(C;L) by
h
0(C;L) subdeterminants of the matrix [XjYk] vanish. The same proof of

Kempf’s proposition above implies this locus, the set of points p at which
the matrix [XjYk(p)] has dependent rows, equals the union of the spans in
canonical space, of the divisors D in |L|.

Arguing as above and using again the unmixedness results for determi-
nantal varieties, the scheme structure defined on the tangent cone by this
explicit matrix of linear forms is reduced, hence these determinants define
the tangent cone as a scheme. Since this is the reduced scheme structure on
an irreducible variety, these determinants generate a prime ideal.



32 ROY SMITH AND ROBERT VARLEY

Finally Kempf computes the degree of the tangent cone by computing
its cycle class as a push forward of the cycle class of the normal bundle in
PTLJ × |L| defined by the equations {

�
j(XjYk) · Tj = 0, all k}. I.e. these

h
0(C;K − L) equations of type (1, 1) define the projective normal bundle

N as a complete intersection. If h1 and h2 are hyperplanes in PTLJ and |L|

respectively, the cycle class of the zero locus of a single (1, 1) form is the
class of (h1 × |L|) + (PTLJ × h2).

Hence the class of N is the h0(C;K−L)-fold self intersection of this class,
which by the binomial theorem equals:

�

n+m=h0(C;K−L)
n,m≥0

(n+m)!

n!m!
h
n
1 · h

m
2

where h
s is the class of the intersection of s general hyperplanes in the

projective space containing h, h0 equals that whole projective space, and
h
n
1 · hm2 is the class of the Cartesian product of those intersections, in the

product of both projective spaces.

Projecting into PTLJ , the only non zero, i.e. dimension preserving, pro-
jection of this class occurs when h

m
2 is zero dimensional, i.e. the component

withm = dim|L|, which gives
(h0(C;K − L))!

(dim|L|)! (g − i)!
h
g−i
1 . Hence the multiplicity

of W i at L equals
� h1(L)
dim|L|

�
. �
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