Problem 1. If x is twice the square of half of the square root of 2018, what is x + 1 (simplified)?

Problem 1. If x is twice the square of half of the square root of 2018, what is x + 1 (simplified)?

Problem 2. The area of a circle is 100π units². If the radius is increased by 1 unit, how much will the area change?

Problem 2. The area of a circle is 100π units². If the radius is increased by 1 unit, how much will the area change?

Problem 3. If
$$x + \frac{1}{x} = 3$$
, what is $x^2 + \frac{1}{x^2}$?

Problem 3. If $x + \frac{1}{x} = 3$, what is $x^2 + \frac{1}{x^2}$?

Problem 4. What is the length of the shortest path from (0,0) to (7,7) that does not go inside the square shown? The path may touch the square.

Problem 4. What is the length of the shortest path from (0,0) to (7,7) that does not go inside the square shown? The path may touch the square.

Problem 5. Find the nearest integer to $1024^{\log_2(256)} - 256^{\log_2(1024)}$.

Problem 5. Find the nearest integer to $1024^{\log_2(256)} - 256^{\log_2(1024)}$.

Problem 6. If A and B are midpoints of the sides in the 1 by 1 square shown, what is the area of the shaded region?

Problem 6. If A and B are midpoints of the sides in the 1 by 1 square shown, what is the area of the shaded region?

Problem 7. What is the largest prime factor of the binomial coefficient $\binom{100}{50}$?

Problem 7. What is the largest prime factor of the binomial coefficient $\binom{100}{50}$?

Problem 8. How many rectangles are in the grid below? Only count those rectangles whose edges lie on the lines shown.

Problem 8. How many rectangles are in the grid below? Only count those rectangles whose edges lie on the lines shown.

Problem 9. The positive integers a and b each have exactly two prime factors: 2 and 3. If a does not divide b and b does not divide a, what is the smallest that a can be?

Problem 9. The positive integers a and b each have exactly two prime factors: 2 and 3. If a does not divide b and b does not divide a, what is the smallest that a can be?

Problem 10. What is the first row of Pascal's triangle that has an entry larger than 2018? The n^{th} row is the one that begins $1, n, \ldots$.

Problem 10. What is the first row of Pascal's triangle that has an entry larger than 2018? The n^{th} row is the one that begins $1, n, \ldots$.

