

Sponsored by: UGA Math Department
Team Round, 3 problems / 1 hour / 210 points
October 21, 2023

Problem 1 (Party). Mo has invited 2023 guests for his retirement party. His way of the sharing the cake is quite eccentric: the first guest gets $\frac{1}{2023} \mathrm{rd}$ of the cake, the second guest gets $\frac{2}{2023} \mathrm{rd}$ of what is left, the third guest gets $\frac{3}{2023} \mathrm{rd}$ of what is left, ..., and the last guest gets $\frac{2023}{2023} \mathrm{rd}$-that is everythingof what is left.
Which guest receives the largest piece?

Problem 2 (Alea iacta est). Let Δ represent the difference between the largest possible sum and the smallest possible sum of all visible faces on a dice configuration. Imagine a construction like the one below but where the number of 'holes' is not 5 but some larger number g. If $\Delta=2032$ for that construction, what is the number of holes (g)?

Problem 3 (This problem stinks). The septic number system consists of the positive integers of the form $7 n+1$: that is, $1,8,15,22$, etc. A septic prime is a septic number larger than 1 that cannot be written as a product of two smaller septic numbers. Every septic number larger than 1 can be written as a product of septic primes, but this factorization is not always unique. For example, $36 \times 169=78 \times 78$, and all of 36,169 , and 78 are septic primes. In this instance our two factorizations have length 2 , where the length is the number of septic primes involved in the factorization (with repeated primes counted multiply).

For each septic integer n, let

$$
E(n)=\frac{\text { largest length of a factorization of } n \text { into septic primes }}{\text { smallest length of such a factorization }} .
$$

Find the largest possible value of $E(n)$.

