

Sponsored by: UGA Math Department and UGA Math Club
Written test, 25 problems / 90 minutes
October 26, 2019
No calculators are allowed on this test. 10 points for a correct answer, 0 points for an incorrect answer, and 2 points for an answer left blank.

Problem 1. How many of the following equations have solutions in positive integers?
i) $28 x+30 y+31 z=365$
ii) $29 x+30 y+31 z=366$
iii) $10 x+26 y=2019$
iv) $3 x+4 y=5 z$
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Problem 2. Suppose that a, b, and c are three distinct real numbers. For each nonempty subset of $\{a, b, c\}$, we can compute its average. For example,

$$
\begin{gathered}
\text { average }\{a\}=a, \\
\text { average }\{a, b\}=\frac{a+b}{2} .
\end{gathered}
$$

If the averages, listed in increasing order, of the 7 nonempty subsets of $\{a, b, c\}$ are

$$
2,6,10,12,13,17,24
$$

then what is $\frac{a+b+c}{3}$?
(A) 6
(B) 10
(C) 12
(D) 13
(E) 17

Problem 3. If $5^{x} \cdot 7^{y}=4$, then y, as a function of x, is
(A) linear
(B) polynomial of degree ≥ 2
(C) exponential
(D) logarithmic \quad (E) y is not a function of x

Problem 4. Tank A is a vertical cylinder with radius 2 ft ; $\operatorname{tank} B$ is a vertical cylinder with radius 3 ft . Water is drained from tank A into tank B. If the depth of the water in tank A is decreasing at a constant rate of $1 \mathrm{ft} / \mathrm{hr}$, at what rate is the depth of the water in tank B increasing?
(A) $1 \mathrm{ft} / \mathrm{hr}$
(B) $\frac{2}{3} \mathrm{ft} / \mathrm{hr}$
(C) $\frac{3}{2} \mathrm{ft} / \mathrm{hr}$
(D) $\frac{4}{9} \mathrm{ft} / \mathrm{hr}$
(E) $\frac{9}{4} \mathrm{ft} / \mathrm{hr}$

Problem 5. If you cut a finite interval randomly into two pieces, what is the probability that one of them is at least three times as long as the other?
(A) $\frac{1}{4}$
(B) $\frac{1}{3}$
(C) $\frac{1}{2}$
(D) $\frac{2}{3}$
(E) $\frac{3}{4}$

Problem 6. What is the smallest n such that a group of n people has probability $\geq \frac{1}{2}$ of having two people born in the same month, assuming that each of the 12 possible birth months is equally likely?
(A) 3
(B) 4
(C) 5
(D) 6
(E) 7

Problem 7. If $f(x)=e^{-x}$, what is the range of $f(f(f(x)))$?
(A) $(1, e)$
(B) $(1 / e, 1)$
(C) $(0,1 / e)$
(D) $(0,1)$
(E) $(0, e)$

Problem 8. You are connecting a wire between the top of a height 4 ft pole and the top of a height 12 ft pole. The wire also has to be connected to the ground between the poles. If there is 8 ft between the poles, what is the minimum length of the wire?

(A) $8 \sqrt{5}$
(B) 18
(C) $13 \sqrt{2}$
(D) 20
(E) 21

Problem 9. Suppose each positive integer is assigned exactly one of the colors red, black or silver, in such a way that for every $z \geq 3$ there are distinct positive integers x and y so that $x+y=z$, and x, y, and z are all different colors; i.e. $x+y=z$ has a "rainbow solution." If 2019 is red, what color(s) can 1 be?
(A) red
(B) black
(C) black or silver
(D) red, black, or silver
(E) there is no such coloring

Note. For $n>1$, a geometric figure is called an n-reptile if it can be decomposed into n figures which are congruent to each other and similar to the original figure. For example, a square is a 4-reptile, and also a 9-reptile.

You also saw in the ciphering round that a $1 \times \sqrt{2}$ rectangle is a 2-reptile.

Problem 10. What is the smallest $n>1$ for which a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle is an n-reptile?
(A) 2
(B) 3
(C) 4
(D) 5
(E) 6

Problem 11. For how many $n, 1<n<50$, is an equilateral triangle an n-reptile?
(A) 2
(B) 3
(C) 4
(D) 5
(E) 6

Problem 12. What is the smallest positive integer n such that $p(n)=n^{2}+20 n+19$ is divisible by 2019 ?
(A) 654
(B) 672
(C) 1327
(D) 2000
(E) 2019

Problem 13. For how many positive integers n is the decimal expansion of $\frac{1}{n}$ purely periodic with period 3 (and no smaller period!) ?
(A) 4
(B) 5
(C) 6
(D) 7
(E) 8

Problem 14. If $a=1+z$ and $b=1-\frac{1}{z}$ and $a+b=7$, what is $a^{3}+b^{3}$?
(A) 238
(B) 288
(C) 321
(D) 325
(E) 343

Note. The next two problems are about the area of a union of disks. Recall that a disk consists of a circle together with the points inside the circle.

Problem 15. Let L be the line segment in \mathbb{R}^{2} from $(0,0)$ to $(2,0)$. At each point $(x, 0)$ of L draw a disk of radius x centered at $(x, 0)$. What is the area of the union of these disks?
(A) $2+\frac{\pi}{2}$
(B) $2+\pi$
(C) $2+2 \pi$
(D) 2π
(E) 4π

Problem 16. Again let L be the line segment in \mathbb{R}^{2} from $(0,0)$ to $(2,0)$. At each point $(x, 0)$ of L, draw a disk of radius $\frac{x}{2}$ centered at $(x, 0)$. What is the area of the union of these disks?
(A) $\frac{\sqrt{3}}{2}+\pi$
(B) $\sqrt{3}+\pi$
(C) $\frac{\sqrt{3}}{2}+\frac{2}{3} \pi$
(D) $\sqrt{3}+\frac{2}{3} \pi$
(E) 2π

Problem 17. The terms in a sequence of positive integers add up to 2019. If P is the largest possible product of these terms, what is the number of different primes dividing P ?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

Problem 18. Recall that a polygon is said to be convex if all of its interior angles measure strictly less than 180°. A lattice point in \mathbb{R}^{2} is a point with coordinates (x, y), with x and y both integers. Now consider the following statement:

Every convex n-gon in \mathbb{R}^{2} having all its vertices at lattice points contains a lattice point in its interior.

The least positive integer $n \geq 3$ for which this statement holds is
(A) 4
(B) 5
(C) 6
(D) 7
(E) there is no such n

Problem 19. For how many positive integers n is $(3.5)^{n}+(12.5)^{n}$ an integer?
(A) 1
(B) 2
(C) 3
(D) 4
(E) infinitely many

Problem 20. Suppose you want to cover an 8×8 checkerboard with $21 L$-shaped tiles and a single 1×1 square tile.

How many different locations are there on the board where the square tile could be located in a successful tiling? You are allowed to rotate the L-shaped tile.
(A) 0 (i.e., no such tiling is possible)
(B) 4
(C) 8
(D) 22
(E) 64

Problem 21. Suppose you want to cover an 8×8 checkerboard with 21 straight tiles of length 3 and a single 1×1 square tile.

How many different locations are there on the board where the square tile could be located in a successful tiling? You are allowed to rotate the straight tile.
(A) 0 (i.e., no such tiling is possible)
(B) 4
(C) 8
(D) 22
(E) 64

Problem 22. For each integer $n>1$, let $f(n)$ denote the number of factorizations of n, meaning the number of ways of writing n as an ordered product of integers larger than 1. For example, 12 has 8 factorizations:

$$
12, \quad 2 \cdot 6, \quad 6 \cdot 2, \quad 3 \cdot 4, \quad 4 \cdot 3, \quad 2 \cdot 2 \cdot 3, \quad 2 \cdot 3 \cdot 2, \quad 3 \cdot 2 \cdot 2
$$

Let $f_{\text {odd }}(n)$ count the number of factorizations with an odd number of parts and $f_{\text {even }}(n)$ count the number of factorizations with an even number of parts. What is the largest value of

$$
\left|f_{\text {odd }}(n)-f_{\text {even }}(n)\right|
$$

for $1<n \leq 2019$?
(A) 0
(B) 1
(C) 3
(D) 39
(E) 40

Problem 23. Recall: If X and Y are sets, we say X is a subset of Y if every element of X is also an element of Y; we denote this by $X \subseteq Y$. The empty set \emptyset is a subset of every set. We say X is a proper subset of Y if X is a subset of Y and $X \neq Y$; in this case, we write $X \subsetneq Y$.

How many triples of sets A, B, C are there that satisfy

$$
\emptyset \subseteq A \subsetneq B \subsetneq C \subseteq\{1,2,3,4,5\} \quad ?
$$

(A) 504
(B) 570
(C) 729
(D) 768
(E) 776

Problem 24. How many ordered triples of integers (x, y, z) are there satisfying the simultaneous conditions

$$
x+y+z=3 \quad \text { and } \quad x^{3}+y^{3}+z^{3}=3 \quad ?
$$

The integers x, y, z do not have to be distinct, and are allowed to be positive, negative, or zero.
(A) 1
(B) 4
(C) 7
(D) 10
(E) infinitely many

Problem 25. Suppose $p(x)$ is a degree 6 polynomial which is tangent to $y=2 x+3$ at $x=1, x=2$, and $x=5$. What values can $p(0)$ have?
$\begin{array}{lll}\text { (A) } p(0)=3 & \text { (B) } p(0)=100 & \text { (C) } p(0) \text { can be any real number except } 3\end{array}$
$\begin{array}{ll}\text { (D) } p(0) \text { can be any real number except } 100 & \text { (E) there is no such polynomial }\end{array}$

