

Sponsored by: UGA Math Department and UGA Math Club
Ciphering Round / 2 minutes per problem
October 20, 2018

WITH SOLUTIONS

Problem 1. If x is twice the square of half of the square root of 2018, what is $x+1$ (simplified)?

Answer. 1010
Solution. Notice that

$$
x=2\left(\frac{1}{2} \sqrt{2018}\right)^{2}=2\left(\frac{1}{4} \cdot 2018\right)=\frac{1}{2} \cdot 2018=1009
$$

so $x+1=1010$.

Problem 2. The area of a circle is 100π units 2. If the radius is increased by 1 unit, how much will the area change?

Answer. 21π units 2
Solution. If $A=100 \pi=\pi r^{2}$, then $r=10$. Increase r by 1 to get the new area $\pi\left(11^{2}\right)=121 \pi$. Thus the area increased by 21π.

Note. It is not a coincidence that this is very close to the circumference $2 \pi r=20 \pi$ of the original circle !

Problem 3. If $x+\frac{1}{x}=3$, what is $x^{2}+\frac{1}{x^{2}}$?
Answer. 7
Solution. Square both sides of $x+\frac{1}{x}=3$ to get $x^{2}+2+\frac{1}{x^{2}}=9$. Thus $x^{2}+\frac{1}{x^{2}}=7$.

Problem 4. What is the length of the shortest path from $(0,0)$ to $(7,7)$ that does not go inside the square shown? The path may touch the square.

Answer. 10 units
Solution. There are two candidates for shortest path: $(0,0) \rightarrow(4,3) \rightarrow(7,7)$ and $(0,0) \rightarrow(2,5) \rightarrow(7,7)$. The first has length 5 on each segment while the second has length $\sqrt{29}$ on each segment. Since $5<\sqrt{29}$, the former gives the shortest path.

Problem 5. Find the nearest integer to $1024^{\log _{2}(256)}-256^{\log _{2}(1024)}$.
Answer. 0
Solution. Observe that

$$
1024^{\log _{2}\left(2^{8}\right)}-256^{\log _{2}\left(2^{10}\right)}=1024^{8}-256^{10}=\left(2^{10}\right)^{8}-\left(2^{8}\right)^{10}=0 .
$$

Note. In fact, for any $x, y>0$ and for any base b

$$
x^{\log _{b}(y)}=y^{\log _{b}(x)} .
$$

You can check this by taking $\log _{b}$ of both sides and using properties of logarithms.

Problem 6. If A and B are midpoints of the sides in the 1 by 1 square shown, what is the area of the shaded region?

Answer. 3/8
Solution. Two of the unshaded triangles have area $\frac{1}{2}(1)\left(\frac{1}{2}\right)=\frac{1}{4}$, while the third unshaded triangle has area $\frac{1}{2}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{8}$, so the total shaded area is $1-2\left(\frac{1}{4}\right)-\frac{1}{8}=\frac{3}{8}$. Alternatively, we can directly break the shaded triangle into three subtriangles each with base and height $\frac{1}{2}$:

Problem 7. What is the largest prime factor of the binomial coefficient $\binom{100}{50}$?

Answer. 97
Solution. Recall that $\binom{100}{50}=\frac{100!}{50!50!}$, so any prime factor of $\binom{100}{50}$ must be a prime factor of 100 !. Since 97 is the largest prime less than 100 (so it divides 100!) and 97 is not a factor of $50!$, it is the answer.

Problem 8. How many rectangles are in the grid below? Only count those rectangles whose edges lie on the lines shown.

Answer. 60
Solution. A rectangle is determined by the two vertical lines and the two horizontal lines on which its edges lie. There are $\binom{5}{2}=10$ ways to choose two vertical lines and $\binom{4}{2}=6$ ways to choose two horizontal lines, so there are 60 total rectangles.

Problem 9. The positive integers a and b each have exactly two prime factors: 2 and 3. If a does not divide b and b does not divide a, what is the smallest that a can be?

Answer. 12
Solution. Both a and b are of the form $2^{n} 3^{m}$ where n and m are at least 1 . Thus 6 divides a. If $a=6$ then a will divide b. The next smallest option for a is $2 \cdot 6=12$, and the pair $\{a, b\}=\{12,18\}$ satisfies the conditions.

Note. In fact $\{a, b\}$ is a satisfactory pair if and only if it takes the form $\left\{2^{n} 3^{m}, 2^{x} 3^{y}\right\}$ where $1 \leq n<x$ and $1 \leq y<m$.

Problem 10. What is the first row of Pascal's triangle that has an entry larger than 2018? The $n^{\text {th }}$ row is the one that begins $1, n, \ldots$.

Answer. the 14th row
Solution. The first occurence will happen in the central binomial coeficient $\binom{2 n}{n}$ or $\binom{2 n+1}{n}$. We can work from an initial guess of say $\binom{10}{5}$:

$$
\begin{gathered}
\binom{10}{5}=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=2 \cdot 3 \cdot 7 \cdot 6=252, \\
\binom{11}{5}=\frac{11}{6}\binom{10}{5} \approx 2 \cdot 250=500 \\
\binom{12}{6}=\frac{12}{6}\binom{11}{5} \approx 2 \cdot 500=1000, \\
\binom{13}{6}=\frac{13}{7}\binom{12}{6} \approx 2 \cdot 1000=2000 \\
\binom{14}{7}=\frac{14}{7}\binom{13}{7} \approx 2 \cdot 2000=4000
\end{gathered}
$$

Checking

$$
\binom{13}{6}=\frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=13 \cdot 11 \cdot 3 \cdot 4=(12+1)(12-1) 12<12^{3}=1728
$$

tells us the true answer is the $14^{\text {th }}$ row.

Authors. Written by Mo Hendon, Paul Pollack and Peter Woolfitt.

