

Sponsored by: UGA Math Department and UGA Math Club
Ciphering Round / 2 minutes per problem
October 26, 2019

WITH SOLUTIONS

Problem 1. If a and b are real numbers whose average is 10 , what is the average of a, b, and 16 ?

Answer. 12
Solution. Since $\frac{a+b}{2}=10, a+b=20$, and so $a+b+c=36$. Dividing by 3 shows that the average is 12 .

Problem 2. How many solutions to $x+y=z$ are there if x, y, z are (not necessarily distinct) elements of $\{1,2,3,4,5,6,7,8,9,10\}$? Note that $1+2=3$ and $2+1=3$ are different solutions.

Answer. 45
Solution. Given x, the integer y must be one of the $10-x$ numbers $1,2,3, \ldots, 10-x$, and then z is determined as $x+y$. So there are $\sum_{x=1}^{10}(10-x)=\sum_{x=0}^{9} x=\frac{9 \cdot 10}{2}=45$ solutions.

Problem 3. Find a value $x>1$ so that a 1 by x rectangle can be cut into two congruent rectangles each similar to the original 1 by x rectangle.

Answer. $\sqrt{2} \quad($ or $x=\sqrt{2})$
Solution. Cut the rectangle in half vertically:

The similarity condition then requires $\frac{x / 2}{1}=\frac{1}{x}$, so $x=\sqrt{2}$.

Problem 4. How many subsets of $\{U, G, A, H, S, M, T\}$ have nonempty intersection with $\{U, G, A\}$?

Answer. 112 (sets)
Solution. Our set must be one of the $2^{7}=128$ subsets of $\{U, G, A, H, S, M, T\}$, but not one of the $2^{4}=16$ subsets of $\{H, S, M, T\}$. This leaves $128-16=112$ possibilities.

Problem 5. I got the following message on my phone: "Your screen time was down 37% from last week for an average of 9 minutes/day." What was my screen time, in minutes, last week?

Answer. 100 (minutes)
Solution. This week my screen time was (only!) $9 \times 7=63$ minutes. Solving

$$
(1-.37) x=63
$$

gives $x=100$, so last week I had 100 minutes of screen time.

Problem 6. Let L be the line segment in \mathbb{R}^{2} from $(0,0)$ to $(2,0)$. At each point $(x, 0)$ of L draw a disk of radius 1 centered at $(x, 0)$. What is the area of the union of these disks? (A disk consists of a circle together with the points inside the circle.)

Answer. $4+\pi$
Solution. Here is a picture of the union of disks:

Notice that it consists of a 2×2 rectangle and 2 half-disks of radius 1 , so the area is $4+\pi$.

Problem 7. What is $\arcsin \left(\frac{\pi}{4}\right)+\arccos \left(\frac{\pi}{4}\right)$?
Answer. $\frac{\pi}{2}$
Solution. Let α and β be the angles in the following triangle:

Then $\alpha=\arcsin \left(\frac{a}{b}\right)$ while $\beta=\arccos \left(\frac{a}{b}\right)$. Since $\alpha+\beta=\frac{\pi}{2}$ for any $0<a<b$, we find that actually $\arcsin (x)+\arccos (x)=\frac{\pi}{2}$ for any $-1 \leq x \leq 1$.

Problem 8. What is the largest positive integer k for which 3^{k} divides $\underbrace{999 \ldots 9}_{2019 \text { nines }}$?

Answer. 3 (or $k=3$)
Solution. Let $N=\overbrace{999 \ldots 9}^{2019 \text { nines }}$. Clearly, $3^{2}=9 \mid N$, and $N / 3^{2}=111 \ldots 1$. The sum of the digits of $N / 3^{2}$ is 2019, which is a multiple of 3 but not of 9 . So by the familiar divisibility rules for 3 and 9 , we see that $N / 3^{2}$ is a multiple of 3 but not of 9 . Thus, $3^{3} \mid N$, while $3^{4} \nmid N$.

Problem 9. Detective Uga comes across a combination lock requiring a 5 -digit keycode, with each digit in $\{0,1,2, \ldots, 9\}$. Dusting for prints reveals that the combination only uses the digits $2,0,1,9$ and only those four digits. How many possible
keycodes use those four digits?

Answer. 240 (combinations) or $4^{5}=1024$ (combinations)
Solution. Exactly one of the digits $2,0,1,9$ occurs twice. There are 4 choices for which one. Having made that choice, there are $\frac{5!}{2}=60$ corresponding ways to permute the digits; here the repeated digit accounts for the division by 2 . Thus, there are $4 \cdot 60=240$ combinations in total.

Alternative solution. The above solution gives the intended answer. However, the wording of the problem was imprecise. It should have specified that the combination uses precisely the four digits $2,0,1,9$. As it stands, the problem could be interpreted to allow any subset of $\{2,0,1,9\}$ as the digits of the combination. In that case, there are 4 choices for each of the 5 digits, and so $4^{5}=1024$ possible combinations.

Problem 10. If $p(x)$ is a degree 2 polynomial with positive integer coefficents, with $p(1)=11$ and $p(10)=236$, what is $p(-1) ?$

Answer. 5
Solution. Write $p(x)=a x^{2}+b x+c$ with a, b, c positive integers. Then $11=p(1)=$ $a+b+c$, and so $a=11-b-c \leq 11-1-1=9$. Similarly, $b, c \leq 9$. Since $a, b, c \in\{1,2, \ldots, 9\}$, we see that $p(10)=100 a+10 b+c$ has decimal expansion $a b c$. So $a=2, b=3, c=6$, and $p(-1)=a(-1)^{2}+b(-1)+c=a-b+c=5$.

Authors. Written by Mo Hendon, Paul Pollack, and Peter Woolfitt.

