

Sponsored by: UGA Math Department and UGA Math Club
Team Round / 1 hour / 210 points
October 26, 2019
WITH SOLUTIONS

Problem 1 (Cold-blooded mathematics). Recall that an object is an n reptile if it can be decomposed into n congruent pieces each similar to the original figure.

If a right triangle with shortest leg 1 is a 5 -reptile, what is the length of the hypotenuse?

Answer. $\sqrt{5}$
Solution. To find such a decomposition, drop a perpendicular from the vertex of the right triangle to the hypotenuse.

Then $\triangle A B D, \triangle B C D$, and $\triangle A C B$ are similar. Now decompose $\triangle B C D$ as a 4 -reptile (every triangle is a 4-reptile!) by joining the midpoints of the sides (dashed lines).

The 5 interior triangles are now all similar to $\triangle A B C$, and to each other. To guarantee that they are all congruent, we just need to make sure that they all have the same area, meaning $\operatorname{Area}(\triangle A B C)=5 \cdot \operatorname{Area}(\triangle A B D)$. Since area transforms as the square of the similarity ratio, the sides of $\triangle A B C$ are $\sqrt{5}$ times as long as the corresponding sides of $\triangle A B D$. In particular, the hypotenuse has length $\sqrt{5}$.

Thus, the answer is $\sqrt{5}$ - as long as there is a unique answer! And there is: With a bit of experimentation, you can convince yourself that the above construction is essentially unique. In particular, any 5 -reptile right triangle has side lengths in a ratio $1: 2: \sqrt{5}$.

Remark. Reptiles (usually with the spelling "rep-tiles") were first studied by Solomon Golomb and were popularized by Martin Gardner in the Mathematical Games column in the May 1963 issue of Scientific American.

Problem 2 (Colors and numbers). If the positive integers from 1 to 30 are all colored the same color, then there are guaranteed to be numbers x, y, z that are all the same color and satisfy $x+y=z$ - a "monochromatic solution to $x+y=z$ ". At the other extreme, if the positive integers from 1 to 30 are colored 30 different colors, then there are no monochromatic solutions to $x+y=z$. What is the smallest integer n for which it is possible to color 1 to 30 with n colors and have no monochromatic solution to $x+y=z$?

Note: We do not require that x, y, z be distinct. That is, a solution to $x+y=z$, where $x=y$, and where x and z share the same color, counts as a monochromatic solution.

Answer. 4 (colors)
Solution. The answer is at most 4, as shown by the following coloring with colors A, B, C, D :

1_{A}	2_{B}	3_{B}	4_{A}	5_{C}	6_{C}	7_{C}	8_{C}	9_{C}	10_{A}
11_{D}	12_{D}	13_{D}	14_{D}	15_{D}	16_{D}	17_{D}	18_{D}	19_{D}	20_{D}
21_{A}	22_{B}	23_{B}	24_{A}	25_{C}	26_{C}	27_{C}	28_{C}	29_{C}	30_{A}

To prove that the answer is at least 4, we must show that there is no way to color $1,2, \ldots, 30$ with three colors that avoids a monochromatic solution.

Suppose that we can color $1,2,3, \ldots, N$ with colors A, B, C avoiding a
monochromic solution to $x+y=z$. Let X be the number of elements receiving the most popular color, say (without loss of generality) color A. By the Pigeonhole principle,

$$
N \leq 3 X
$$

List the integers having color A,

$$
n_{1}<n_{2}<\cdots<n_{X}
$$

and consider the $X-1$ differences

$$
\begin{equation*}
n_{2}-n_{1}, \quad n_{3}-n_{1}, \quad \ldots, \quad n_{X}-n_{1} \tag{*}
\end{equation*}
$$

None of these differences can have color A : If $n_{k}-n_{1}$ has color A, then $n_{k}=n_{1}+\left(n_{k}-n_{1}\right)$ is an A-monochromatic solution to $x+y=z$, contrary to assumption. So at least half of the numbers $\left({ }^{*}\right)$ share the same color, say B; list these numbers as

$$
m_{1}<m_{2}<\cdots<m_{Y}
$$

where

$$
X-1 \leq 2 Y
$$

Now consider the $Y-1$ differences

$$
\begin{equation*}
m_{2}-m_{1}, \quad m_{3}-m_{1}, \quad \ldots, \quad m_{Y}-m_{1} . \tag{**}
\end{equation*}
$$

None of these can have color B, as otherwise we have (as above) a B monochromatic solution to $x+y=z$. But none can have color A either: Each $m_{k}-m_{1}$ is a difference of two numbers from $\left(^{*}\right)$, and so has the form $n_{j}-n_{i}$ for some i and j. If $n_{j}-n_{i}$ has color A, then $n_{j}=n_{i}+\left(n_{j}-n_{i}\right)$ is an A-monochromatic solution to $x+y=z$. Thus, the $Y-1$ numbers (${ }^{* *}$) have color C.

If $Y-1 \geq 2$, consider the difference between any two numbers in the list $\left({ }^{* *}\right)$. Arguing as above, we find that this difference cannot have color C, B, or A, which is absurd! So

$$
Y \leq 2
$$

But then

$$
N \leq 3 X \leq 3(X-1)+3 \leq 3(2 Y)+3 \leq 15
$$

So as soon as $N>15$, any coloring of 1 through N using 3 colors is guaranteed to have a monochromatic solution to $x+y=z$. In particular, this is guaranteed when $N=30$.

Remark. Let $N=N(k)$ be the largest positive integer for which it is possible to color $1,2, \ldots, N$ with k colors and avoid a monochromatic solution to $x+y=z$. We have seen above that $N(3) \leq 15$. Issai Schur proved in 1917 that $N(k)$ exists for all positive integers k, and in fact that

$$
N(k)<\lfloor e k!\rfloor,
$$

where $e=2.71828 \ldots$ is the base of the natural logarithm. Our proof that $N(3) \leq 15$ was obtained by specializing Schur's argument to $k=3$. We invite you to do the reverse: generalize our proof to establish the inequality for $N(k)$ given above.

It has been shown that $N(1)=1, N(2)=4, N(3)=13, N(4)=44$, and $N(5)=160$. The values of $N(k)$ are unknown for $k>5$. That $N(5)=$ 160 was not established until 2018; the computer-assisted proof of this fact occupies more than two petabytes!

Problem 3 (Unscrambling an egg). The average of a set of integers is computed by taking the sum of the elements divided by the total number of elements. For example, the average of the set $\{1,5\}$ is $\frac{1+5}{2}=3$ and the average of the set $\{1,5,6\}$ is $\frac{1+5+6}{3}=4$.

Let A be a set with 7 elements (so A has 127 nonempty subsets). The averages of all of the 127 subsets of A are listed below, in increasing order. What are the 7 elements of A ?

Write the numbers you find in increasing order. You must have all the numbers correct to receive credit for this problem.

1	759	27	4014	53	5043	79	5659	105	6723
2	969	28	4119	54	5064	80	5694	106	6744
3	1179	29	4119	55	5099	81	5799	107	6779
4	1319	30	4224	56	5127	82	5799	108	6807
5	1389	31	4259	57	5169	83	5799	109	6919
6	1599	32	4259	58	5169	84	5883	110	6975
7	2019	33	4287	59	5169	85	5904	111	7059
8	2334	34	4329	60	5211	86	5939	112	7164
9	2439	35	4329	61	5211	87	6009	113	7199
10	2719	36	4371	62	5239	88	6009	114	7374
11	2859	37	4399	63	5239	89	6009	115	7479
12	2964	38	4434	64	5259	90	6009	116	7619
13	3069	39	4469	65	5274	91	6051	117	7689
14	3279	40	4539	66	5295	92	6079	118	7759
15	3279	41	4539	67	5379	93	6114	119	7899
16	3384	42	4539	68	5379	94	6135	120	8214
17	3447	43	4539	69	5379	95	6219	121	8319
18	3489	44	4644	70	5379	96	6219	122	8739
19	3559	45	4679	71	5379	97	6219	123	8949
20	3699	46	4707	72	5379	98	6324	124	9159
21	3699	47	4819	73	5379	99	6359	125	9579
22	3783	48	4819	74	5519	100	6429	126	9789
23	3804	49	4854	75	5547	101	6499	127	9999
24	3839	50	4959	76	5589	102	6534		
25	3867	51	4959	77	5589	103	6639		
26	3979	52	4959	78	5631	104	6639		

Answer. 759, 1179, 2019, 5379, 7899, 9579, 9999
Solution. There are many ad hoc approaches to this problem. In the following we will outline a computationally efficient method valid for any finite starting set A.

Since A is a set, all the a_{i} are distinct, and we can list them in increasing order as $a_{1}<a_{2}<\cdots<a_{n}$. (Distinctness is not actually necessary for the argument, but makes some steps cleaner.) All the a_{i} appear in the list because they are the averages of the 1-element subsets. In particular the
smallest average must be a_{1}. Now suppose we have determined the k smallest elements a_{1}, \ldots, a_{k}. Then we classify each average in our list as "known" if it comes from some subset of $\left\{a_{1}, \ldots, a_{k}\right\}$ or "unknown" if it does not (if an average repeats in our list, then it's possible some occurrences are known and others are unknown).

Let x be the smallest unknown average. If x arises as an average of $m+1$ elements of A then it must have the form

$$
x=\frac{a_{k+1}+\sum_{i=1}^{m} a_{i}}{m+1}
$$

as any other average of $m+1$ elements is either larger or known. Notice that $1 \leq m \leq k$.

From here we can use a little trial and error to determine the value of a_{k+1} in our particular case (and defer until the end an argument which removes the reliance on trial and error).

First we know $a_{1}=759$, so our smallest unknown average is 969 , and since $1 \leq m \leq k$, we get $m=1$. This gives the equation

$$
969=\frac{a_{2}+a_{1}}{1+1}
$$

which implies $a_{2}=1179$.
Now that we know a_{1} and a_{2}, our smallest unknown average is 1319 . Since $1 \leq m \leq k$ we have two possibilities:

$$
1319=\frac{a_{3}+a_{1}}{1+1}
$$

or

$$
1319=\frac{a_{3}+a_{1}+a_{2}}{2+1}
$$

The first of these gives $a_{3}=1879$ which is not possible, because 1879 does not appear in our list of averages. On the other hand, the second equation gives $a_{3}=2019$, which does appear in the list of averages.

We could continue this process to find all the numbers, but this will get computationally expensive. Instead, now we will switch to finding the largest 3 elements of A.

In exact analogy to before, we find $a_{7}=2019$, and a_{6} satisfies

$$
9789=\frac{a_{6}+a_{7}}{2}
$$

giving $a_{6}=9579$. The largest unknown average is 9159 , so either

$$
9159=\frac{a_{5}+a_{7}}{2}
$$

or

$$
9159=\frac{a_{5}+a_{6}+a_{7}}{3}
$$

The first of these solves to $a_{5}=8319$, while the second solves to $a_{5}=7899$. Both seem initially possible, but we can note that using 8319 in averages gives rise to numbers which don't appear. For example $\frac{8319+9579}{2}=9054$ which does not appear. Thus $a_{5}=7899$.

We have determined all elements except a_{4}. We could of course proceed as before with more cases for our trial and error, but instead we will give an argument that actually the average of A itself is the middle average on the list, which gives the identity

$$
5259=\frac{a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}}{7}
$$

which solves to give $a_{4}=5379$.
Lemma. The average of A is the middle average on the list.
Proof. For convenience we use the notation $|X|$ to denote the size of the set X. We shall also use X^{C} to denote the complement of X in A, that is X^{C} contains all the elements in A that are not in X. Finally, we let AVG_{S} be the average of set S.

Notice that

$$
|X| \cdot \mathrm{AVG}_{X}+\left|X^{C}\right| \cdot \mathrm{AVG}_{X^{C}}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}
$$

Dividing by 7 we find

$$
\frac{|X| \cdot \mathrm{AVG}_{X}+\left|X^{C}\right| \cdot \mathrm{AVG}_{X^{C}}}{7}=\mathrm{AVG}_{A}
$$

Hence, the average of A can be written as a weighted average of the averages of $|X|$ and $|X|^{C}$. This means AVG_{A} lies between AVG_{X} and $\mathrm{AVG}_{X^{C}}$ for each X and so AVG_{A} is in the middle of the list of averages (for us this is the 64th average).
Q.E.D.

We now explain how to avoid the guess and check strategy of above.
Define

$$
A_{p}:=\frac{a_{k+1}+\sum_{i=1}^{p} a_{i}}{p+1}
$$

Then if $x=A_{m}$ is the smallest unknown average, it satisfies $x \leq A_{m+1}$ and $x \leq A_{m-1}$.

Note that

$$
\begin{aligned}
(m+1) x+a_{m+1} & =(m+2) A_{m+1} \\
& \geq(m+2) x
\end{aligned}
$$

Rearranging this implies $x \leq a_{m+1}$.
Similarly, note that

$$
\begin{aligned}
(m+1) x-a_{m} & =m A_{m-1} \\
& \geq m x .
\end{aligned}
$$

Rearranging, this implies $a_{m} \leq x$.
Therefore $a_{m} \leq x \leq a_{m+1}$, so we can determine m (and therefore a_{k+1}) by examining the position of x relative to our already known numbers a_{1}, \ldots, a_{k}.

Using this process on the given list of averages, we first find $a_{1}=759$ and the smallest unknown average is 969 . This average appears after a_{1}, so $m=1$ and a_{2} satisfies

$$
969=\frac{a_{2}+a_{1}}{2}
$$

so $a_{2}=1179$.
Now the smallest unknown average is 1319 , which appears after a_{2}, so now $m=2$ and a_{3} satisfies

$$
1319=\frac{a_{3}+a_{1}+a_{2}}{3}
$$

so $a_{3}=2019$.
Now we have to compute the new known averages, and once we do, we find 2334 is the smallest unknown average, so now $m=3$ and a_{4} satisfies

$$
2334=\frac{a_{4}+a_{1}+a_{2}+a_{3}}{4}
$$

so $a_{4}=5379$.

Now we are pushing the boundaries of what is reasonable to compute by hand, but if you continued with the process, you would find 2964 is the smallest unknown average, which appears after a_{3} but before a_{4}, so $m=3$ and a_{5} satisfies

$$
2964=\frac{a_{5}+a_{1}+a_{2}+a_{3}}{4}
$$

so $a_{5}=7899$.
Continuing, the next smallest unknown you get is 3384 which again appears between a_{3} and a_{4}, so $m=3$ and a_{6} satisfies

$$
3384=\frac{a_{6}+a_{1}+a_{2}+a_{3}}{4}
$$

so $a_{6}=9579$.
Finally, the last smallest unknown average is 3489 which also appears between a_{3} and a_{4}, so $m=3$ and a_{7} satisfies

$$
3489=\frac{a_{7}+a_{1}+a_{2}+a_{3}}{4}
$$

so $a_{7}=9999$.
Note. You might be wondering why so many numbers above end with 9s. The idea is that the authors wanted all the averages to be integers, which was ensured by making sure all the starting numbers were the same modulo 2,3 , $4,5,6$, and 7 . This comes out to be equivalent to a modulo 420 condition, and so lots of the averages have the same last digit as the chosen starting numbers.

Authors. Written by Mo Hendon, Paul Pollack, and Peter Woolfitt.

