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WITH SOLUTIONS

Problem 1 (Going in circles). What is the smallest radius r so that 3 disks
of raidus r can completely cover a disk of raidus 1?

Answer.
√
3
2

Solution. In order for 3 disks of radius r to cover a disk of radius 1, they
must at least cover the boundary circle of radius 1. The largest part of a
circle that a disk can cover occurs when a diameter of the disk is a chord of
the circle. For 3 disks to cover the entire circle, make their diameters form
an inscribed equilateral triangle. The radius r is then half the side length
of the inscribed equilateral triangle:

√
3
2
. These three discs cover the entire

circle of radius 1, since the radius is large enough to reach the center.



Problem 2 (Making a difference). Suppose a, b, c, and d are distinct positive
integers satisfying
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c
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d
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Define the difference D as

D = 1− 1

a
− 1

b
− 1

c
− 1

d
,

and write D = r/s in lowest terms. If a, b, c, and d are chosen so that D is
as small as possible, what is r + s?

Answer. The smallest possible value of D is 1/1806, and so r + s = 1807.

Solution. To set up for the solution, we introduce the term unit fraction to
mean a fraction of the form 1/n, where n is a positive integer. Thus, D is
the smallest error one can make when approximating 1 from below by a sum
of four unit fractions.

For two unit fractions, the situation is easy: The best approximation to
1 from below is 5/6, which is achieved by 1

2
+ 1

3
. (We leave it to you to

verify this.) Now, notice that if we have an approximation to 1 from below
by n unit fractions, with an error of exactly 1

d
, appending the fraction 1

d+1
to

our list gives a new approximation from below involving n+1 unit fractions
where the error is 1

d(d+1)
. Since we have an approximation with error 1

6
with

d = 2, we have one with error 1
6(7)

= 1
42

with d = 3 and one with error
1

42(43)
= 1

1806
with d = 4. Keeping track of the fractions involved, we see that
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7
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43
achieves this bound.

It is believable but far from obvious that we cannot get closer than 1
1806

.
The proof we give below requires some numerical legwork supplemented by
the following CLAIM. Suppose A < B are positive real numbers. Suppose
also that we have a lower bound on A, say A ≥ C (where C is also positive)
and a lower bound on the product AB, say AB ≥ P (with P positive too).
Then the largest 1/A + 1/B can be occurs when A and AB are as small
as allowed (that is, A = C and B = P/C). In other words, 1/A + 1/B ≤
1/C + C/P .

To prove the CLAIM, fix the product AB, say AB = M , so that B =
M/A. We first argue that 1/A+ 1/B ≤ 1/C + C/M . Indeed, if we subtract
the left-hand side from the right we get (A−C)(1/AC−1/M). Here A−C ≥ 0
(by assumption). Furthermore, C ≤ A < B, and so AC < AB = M . Hence,



1/AC − 1/M > 0. Recalling that M ≥ P , we conclude that 1/A + 1/B ≤
1/C + C/M ≤ 1/C + C/P , proving the CLAIM. Moreover, tracing through
the argument shows equality holds if and only if A = C and B = P/C.

Before showing 1/1806 is optimal for 4 fractions, let us show 1/42 is
optimal for 3 fractions. This is not strictly necessary but illustrates the
methods.

Suppose 1/a + 1/b + 1/c < 1 is smaller than 1 but within 1/42 of 1.
Observe that the difference 1−1/a−1/b−1/c is positive and can be written
as a fraction with denominator abc. Hence, for this difference to be at most
1/42, it must be that abc ≥ 42. To continue, assume WLOG that a < b < c.
We must have a = 2. Otherwise, a ≥ 3, and 1
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. But a

crude numerical approximation of the RHS shows that it is smaller than 0.8,
so there is no way 1

a
+ 1
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c
can be within 1/42 of 1. So we may assume a = 2.

Then bc ≥ 21 and b ≥ 3. By the above CLAIM, 1
2
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≤ 1
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7
= 41

42
.

This shows that 1/42 is optimal with three fractions and is achieved only
when a = 2, b = 3, and c = 7.

With the warm up out of the way, we turn to four unit fractions. Suppose
1/a+ 1/b+ 1/c+ 1/d is smaller than 1 but within 1/1806 of 1. Analogously
to the above, we assume a < b < c < d. Then (arguing as above) we must
have abcd ≥ 1806. We must also have a = 2, since otherwise 1
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6
= 19/20, which is too small.

Continuing, we notice that b must be 3, 4, or 5. Indeed, if b ≥ 6, then
1
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. The upper bound here is smaller than
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= 1. But it cannot be within 1/1806 of 1, since 2 ·6 ·7 ·8 < 1806.

So if b ≥ 6, then 1
a
+ 1

b
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d
is again too small.

Suppose b = 5. Then cd ≥ 1806/ab = 1806/10, and hence cd ≥ 181. Also,
c ≥ 6. By the CLAIM, 1
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which is far too small. Similarly, if b = 4, then cd ≥ 1806/8, so that cd ≥ 226.
Also, c ≥ 5. But then 1
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Again, this is far too small. So b = 3. Now in order for 1
a
+ 1

b
+ 1

c
+ 1

d
to

be smaller than 1, it must be that c ≥ 7. But also cd ≥ 1806/6 = 301.
Hence, by the CLAIM once more, 1
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1806
. This implies that 1/1806 is optimal and only achieved

when a = 2, b = 3, c = 7, and d = 43.



Problem 3 (Descent into madness). How many equilateral triangles can be
formed using the integer points which lie in the cube [0, 4] × [0, 4] × [0, 4]?
Note: The integer points on the surface of the cube are also included for a
total of 125 integer points.

Answer. 1264



Solution. The intended practical approach to solving this question is to
observe that you can generate equilateral triangles by choosing points sym-
metrically with respect to a vertex of the cube (say all a knights move away
from that vertex) e.g. in the 2× 2× 2 cube below.

There is just one additional case to find: One type of equilateral triangle
is not so aligned, for example the equilateral triangle formed by A = (0, 3, 0),
B = (4, 4, 1), and C = (3, 0, 0). This exception arises because it is possible
to write 18 as the sum of 3 squares in two different ways. Careful counting
then yields the solution of 1264 triangles.

What follows below is a more rigorous approach to the problem.

We can detect if three points form an equilateral triangle by checking if
the distance between each pair of points is the same. Given points two points
A = (a1, a2, a3) and B = (b1, b2, b3), the distance between them is√

(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2. (∗)

Now suppose that A = (a1, a2, a3), B = (b1, b2, b3), and C = (c1, c2, c3)
form an equilateral triangle, and define u⃗ = (u1, u2, u3) and v⃗ = (v1, v2, v3)
to be the vector from A to B and the vector from B to C respectively, i.e.

u⃗ = (b1 − a1, b2 − a2, b3 − a3), v⃗ = (c1 − b1, c2 − b2, c3 − b3).

If we similarly define the vector w⃗ from C to A, then we can observe
u⃗+ v⃗ + w⃗ = 0⃗ so w⃗ = −(u⃗+ v⃗).

Because A, B, and C form an equilateral triangle, the lengths of u⃗, v⃗,
and w⃗ must be equal, and indeed if ℓ is the sidelength of the triangle then

ℓ2 = u2
1 + u2

2 + u2
3 = v21 + v22 + v23 = (u1 + v1)

2 + (u2 + v2)
2 + (u3 + v3)

2.

Expanding out the right hand side, we find ℓ2 must be even as

ℓ2 = 2ℓ2 + 2(u1v1 + u2v2 + u3v3).



Now we catalog all of the possibilities for vectors u⃗ in the 4× 4× 4 cube
where u2

1 + u2
2 + u2

3 = ℓ2 is even. The table below is grouped in terms of the
largest magnitude component of u.

{|u1|, |u2|, |u3|} ℓ2

{1, 0, 1} 2
{2, 0, 0} 4
{2, 0, 2} 8
{2, 1, 1} 6
{2, 2, 2} 12
{3, 0, 1} 10
{3, 0, 3} 18
{3, 1, 2} 14
{3, 2, 3} 22
{4, 0, 0} 16
{4, 0, 2} 20
{4, 0, 4} 32
{4, 1, 1} 18
{4, 1, 3} 26
{4, 2, 2} 24
{4, 2, 4} 36
{4, 3, 3} 34
{4, 4, 4} 48

Note that every ℓ2 value is unique except 18 which can be generated by
either {3, 0, 3} or {4, 1, 1}. This means that if we hope to have equilateral
triangles of sidelength ℓ ̸=

√
18, they can only be generated by vectors with

the same magnitude coordinates. To take a specific example, if we want a
cube of sidelength

√
6 it can only be formed with three points A, B, and C

such that the coordinates of the vectors between any two of them take the
form (2, 1, 1) in some order and with some signs.

Case 1: Three vectors of the same coordinate magnitudes. We
will reduce the above table to the list where it’s actually possible to use
three vectors of the same coordinate magnitudes to add to 0⃗ (recalling we
need u⃗+ v⃗ + w⃗ = 0⃗).

For example, the {2, 1, 1} option remains in the table below because there
are choices for u⃗, v⃗, and w⃗ with these coordinate magnitudes such that u⃗ +
v⃗ + w⃗ = 0⃗, e.g.

u⃗ = (2, 1, 1), v⃗ = (−1,−2, 1), u⃗ = (−1, 1,−2).



On the other hand {2, 0, 0} has been removed from the table because no such
valid choice for u⃗, v⃗, and w⃗ exists.

{|u1|, |u2|, |u3|} ℓ2

{1, 0, 1} 2
{2, 0, 2} 8
{2, 1, 1} 6
{3, 0, 3} 18
{3, 1, 2} 14
{4, 0, 4} 32
{4, 1, 3} 26
{4, 2, 2} 24

Now we can count how many of each of these triangles there are.
{1, 0, 1}: Three vectors of this form correspond to corners on a unit cube,

and as seen in the ciphering round there are 8 such triangles in each unit
cube. The scaled versions of {1, 0, 1}, namely {2, 0, 2}, {3, 0, 3}, and {4, 0, 4},
correspond to the corners of a 2× 2× 2 cube, a 3× 3× 3 cube, and 4× 4× 4
cube respectively. In the 4 × 4 × 4 cube there are 64 copies of a unit cube,
27 copies of a 2× 2× 2 cube, and 8 copies of a 3× 3× 3 cube so collectively
these contribute (64 + 27 + 8 + 1)8 = 800 triangles.

{2, 1, 1}: Three vectors of this form correspond to choosing the midpoints
of edges of a 2× 2× 2 cube as shown in example below. Each is positioned
symmetrically with respect to a vertex (a specific knight’s move away), so
there are 8 for each 2 × 2 × 2 subcube. There are also 8 from the scaled
version {4, 2, 2} in the 4× 4× 4 cube. This adds a total of (27 + 1)8 = 224
triangles

{3, 1, 2}. This corresponds to two different equilateral triangles symmetric
with respect to a vertex as pictured below (for a total of 16 in each 3× 3× 3
subcube). The case {4, 1, 3} is essentially identical (also pictured below).
These add a total of (8 + 1)16 = 144 new triangles.



Case 2: Using both {3, 0, 3} and {4, 1, 1}. It is not possible to use two
{3, 0, 3} coordinate magnitude vectors, but it is possible to use two {4, 1, 1}
coordinate magnitude vectors. One working collection is

u⃗ = (4, 1, 1), v⃗ = (−1,−4,−1), u⃗ = (−3, 3, 0),

which corresponds to the type of triangle pictured below. Observe that
you can “push” this triangle into the cube 4 times to get 4 new triangles
of the same orientation given a starting choice of the {3, 0, 3} coordinate
magnitude vector on a face of the cube.

(4, 4, 1)

(0, 3, 0)

(3, 0, 0)



For each of the 6 faces of the 4× 4× 4 cube, there are 4 ways of picking
the {3, 0, 3} coordinate magnitude vector, leading to a total of 6 · 4 · 4 = 96
additional triangles.

Adding up our counts, we obtain the total number of equilateral triangles
as

800 + 224 + 144 + 96 = 1264.

(∗) You can see the three dimensional distance formula by either noting
that the equation for a sphere of radius r centered at (a1, a2, a3) is

(x− a1)
2 + (y − a2)

2 + (z − a3)
2 = r2,

or by drawing right triangles and applying the Pythagorean theorem twice
as below (with △x = b1 − a1, △y = b2 − a2, △z = b3 − a3).

(a1, a2, a3)

(b1, b2, b3)

△y

△x

△z √
△x2 +△z2

√
△x2 +△y2 +△z2
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