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WITH SOLUTIONS

No calculators are allowed on this test. 10 points for a correct answer, 0
points for an incorrect answer, and 2 points for an answer left blank.

Problem 1. Suppose a, b, c, and d are nonzero digits 1, 2, . . . , 9 and

abc − d = 2022.

What is a+ b+ c+ d? Note: Here ab is a two digit number, not a product.

(A) 11 (B) 12 (C) 13 (D)♡ 14 (E) 15

Solution. Since ab is a two digit number, ab1 < 100 and ab4 > 10000, so c must be
2 or 3. The only two digit numbers whose cubes are less than 2500 are 103 = 1000,
113 = 1331, 123 = 1728, and 133 = 2197. None of these are within 9 of 2022, so we
must have c = 2.

The two digit number whose square is closest to 2022 is 45; indeed 452 = 2025,
and

2022 = 452 − 3.

Therefore a = 4, b = 5, c = 2, and d = 3. Thus a+ b+ c+ d = 14.

Problem 2. Let a and b be nonnegative integers such that ab < ab < a+b. To which
of the following is (a+ b)2 equivalent.

(A)♡ a2 (B) b2 (C) ab (D) 4ab (E) a+ b

Solution. Note that ab+1 < a+ b, so ab− a− b+1 < 0, but the left-hand side can
be factored as (a − 1)(b − 1), so we find that either a or b must be 0. If a = 0, the
inequality ab < ab fails, so b = 0. When b = 0 the last inequality forces a > 1 and
indeed any choice of such an a is valid. Hence (a+ b)2 = (a+ 0)2 = a2.



Problem 3. You can write

x1022 = (x2 − 1)f(x) + Ax+B

for some polynomial f(x), where A and B are real numbers. What is A2 +B2?

(A) 0 (B) 1
2

(C)♡ 1 (D) 2 (E) 5
2

Solution. First Approach: Substituting x = 1 gives us 1 = A + B; substituting
x = −1 gives us 1 = −A+B. Solving this system of equations readily gives us A = 0,
B = 1 and so A2 +B2 = 1.

Second Approach: More explicitly, recalling that an−bn = (a−b)(an−1+an−2b+
· · · + bn−1), we write x1022 − 1 = (x2)511 − 1 = (x2 − 1)(x1020 + x1018 + · · · + x2 + 1)
and so x1022 = (x2 − 1)(x1020 + x1018 + · · ·+ x2 + 1) + 1. This gives us A = 0, B = 1
as in Solution 1.

Problem 4. Let p(x) = a0+a1x+a2x
2+ . . .+an−1x

n−1+xn be the monic polynomial
of the lowest degree vanishing exactly at the positive divisors of 16 (i.e. p(m) = 0 if
and only if m ≥ 0 and m divides 16). What is p(0)?

(A) −31 (B) 31 (C) 256 (D)♡ −1024 (E) 1024

Solution. A polynomial p(x) will vanish at a if and only if it can be factored as
p(x) = (x − a)q(x). Since the divisors of 16 are 1, 2, 4, 8 and 16, and p(x) is of
minimal degree with 1 as leading coefficient, it can written as

p(x) = (x− 1)(x− 2)(x− 4)(x− 8)(x− 16).

Evaluating the above expression at 0, we get (−1)51 · 2 · 4 · 8 · 16 or

−1024.

Problem 5. Suppose you have 100 positive integers with the property that

a1 < a2 < · · · < a99 < A < a100,

where A is the average of the 100 numbers a1, . . . , a100. What is the smallest that
a100 can be?

(A) 100 (B) 4950 (C)♡ 4951 (D) 5050 (E) This is not possible

Solution. Assume a100 is minimized. Under this assumption a1 = 1 is forced,
otherwise we could decrease every ak by 1 without changing the relative position of
the average. Also note that ak−1 and ak must be consecutive for k ≤ 99, else we
could increase ak−1 by 1 and decrease a100 by 1 without changing the average A,



contradicting the minimality of a100. Hence a1 = 1, . . . , a99 = 99. Then the average
of the 100 numbers is

1 + 2 + · · ·+ 99 + a100
100

=
4950 + a100

100
.

We want this to be bigger than a99 = 99:

4950 + a100
100

> 99 ⇐⇒ 4950 + a100 > 9900 ⇐⇒ a100 > 4950,

so the smallest that a100 can be is 4951.

Problem 6. The average of n numbers a1, a2, . . . , an is 10. If each ak is increased
by k, the n resulting numbers have an average of 20. What is n?

(A) 4 (B) 10 (C)♡ 19 (D) 20 (E) There is not a unique solution.

Solution. The average of a1, a2, . . . , an is 10, that is

10 =
1

n

n∑
k=1

ak.

The average of the increased numbers is 20;

20 =
1

n

n∑
k=1

[ak + k]

=
1

n

n∑
k=1

ak +
1

n

n∑
k=1

k

= 10 +
1

n

n(n+ 1)

2

= 10 +
n+ 1

2

Hence n = 19.

Problem 7. We know that there are 8! = 40320 permutations of the set {1, 2, 3, 4, 5, 6, 7, 8}.
How many of those permutations map the small numbers {1, 2, 3, 4} to the large num-
bers {5, 6, 7, 8}?

(A) 24 (B)♡ 576 (C) 2520 (D) 10080 (E) 20160

Solution. If σ(x) is such a permutation, then there are four options for σ(1), three
remaining options for σ(2), two remaining options for σ(3), and only one remaining
option for σ(4). There are the same options for σ(5), σ(6), σ(7), and σ(8), for a total
of (4!)2 = 576 options.



Problem 8. An L-tromino is a shape made by gluing three unit squares into the
shape of an L. Take a 4 × 4 square board, consisting of 16 unit squares, and choose
a unit square. It is always possible to cover the entire board except for the chosen
square with L-trominos, rotating them if necessary. In such a tiling, each L-tromino
is in one of four different orientations:

Orientation 1 Orientation 2 Orientation 3 Orientation 4

For a tiling of the board minus a square, define a1 be the number of L-trominos
in Orientation 1 (as defined above), and similarly define a2, a3, a4. For example, in
the tiling below, we have a1 = 1, a2 = a3 = 2, a4 = 0.

Consider now a tiling of the board minus the shaded square shown below:

Which of the following is the largest?

(A) a1 (B)♡ a2 (C) a3 (D) a4 (E) Cannot be determined

Solution. The following is a tiling for the board above. In this tiling, we have
a1 = a3 = a4 = 1, a2 = 2.



This tiling is, in fact, the only possible tiling. To deduce this, first we note that
in order to cover the square in the upper-left corner, but leave the shaded square
uncovered, we can only have an L-tromino in Orientation 4 at the upper-left corner.
Then, to cover the upper-right corner, we can only have an L-tromino in Orientation
2, 3, or 4. An L-tromino in Orientation 2 would leave a square on the upper edge
of the board uncovered. An L-tromino in Orientation 4 would force an L-tromino in
Orientation 1 to cover the “missing” square from that first L-tromino on the right
edge; this then leaves two squares in the lower-right corner that cannot be covered.
Thus, we must in fact have an L-tromino in Orientation 3 in the upper-right corner. A
similar argument shows that we must have an L-tromino in Orientation 2 in the lower-
right corner, then an L-tromino in Orientation 1 in the lower-left corner. Finally, we
have three other uncovered squares, and these are covered exactly by an L-tromino
in Orientation 2. This gives us the exact tiling above.

Problem 9. Find a digit y, that is y ∈ {0, 1, . . . , 9}, so that for every digit x, the 10
digit number

1022xy2022

is not divisible by 11.

(A) 0 (B)♡ 2 (C) 4 (D) 6 (E) 8

Solution. 1022xy2022 is divisible by 11 if and only if

1− 0 + 2− 2 + x− y + 2− 0 + 2− 2 = 3 + x− y

is divisible by 11. Since x and y are small, this means either 3+x−y = 0 or 3+x−y =
11. The first says that x = y − 3, which for y ≥ 3 has solutions x ∈ {0, . . . , 9}. The
second says x = 8 + y, which for y ≤ 1 has solutions in x ∈ {0, . . . , 9}. So we take
y = 2: 1022x22022 is not divisible by 11 for any digit x.

Problem 10. We all know two distinct points in the plane determine one line, while
three distinct points determine either one or three lines; depending on whether the
points are colinear:

So we say there are 2 different configurations of 3 points.
Similarly, there are 3 different configurations of 4 points:



How many different configurations of 5 points are there?

(A) 4 (B)♡ 5 (C) 6 (D) 8 (E) 9

Solution. We can organize our count based on the largest number of points on one
line:

Max 5 points on a line determine a single line:

Max 4 points on a line determine 5 lines:

Max 3 points on a line determine either 8 or 6 lines:

Max 2 points on a line determine 10 lines:



Problem 11. How many rectangles are there in a 2022× 2022 chessboard? Yes, one
of the listed options is the correct answer!

(A) 4183059834002 (B) 4183059834003 (C) 4183059834007 (D) 4183059834008
(E)♡ 4183059834009

Solution. If one assumes the correct answer is among those listed, this is a quick
problem after the following two observations:

1. The number of rectangles in an n× n square is a perfect square.

2. The rightmost digit of a perfect square can only be 0, 1, 4, 5, 6, or 9.

The second claim can be checked immediately by looking at all possible squares
modulo 10. The first claim can be seen by observing that a rectangle is uniquely
determined by a choice of two horizontal boundary lines and two vertical boundary
lines. If there are x ways to choose the horizontal lines, then there are also x ways to
choose the vertical lines, so there are a total of x2 ways of choosing the rectangle.

In fact, here there are 2023 places to put a vertical boundary line (noting the
edges of the board are valid boundary lines), so we get

x2 =

(
2023

2

)2

= 20232 · 10112 = 4183059834009.

Problem 12. Assume (x, y, z) is a Pythagorean triple, that is x2 + y2 = z2. Assume
x and z are successive odd numbers and x is not divisible by 3. Which of the following
is guaranteed to be a divisor of y?

(A) 9 (B) 10 (C)♡ 12 (D) 15 (E) 21

Solution. We can write x2+y2 = (x+2)2 = x2+4x+4, which reduces to y2 = 4(x+1).
Since x is odd, (x + 1) must be even, so y must in fact be divisible by 4. Moreover,
if we divide any whole square by 3, the remainder is 0 or 1. If both x and y are not
divisible by 3, the remainder for z2 will be 2 which is a contradiction. Therefore, y
must be divisible by 3. Hence, y is always divisible by 12.

The following description will be used for the next three problems.
Beware: they’re squary! Define a spooky square with spooky sum S to be an



arrangement of the numbers 1 through 9 in the nine spaces below such that each of
the four 2× 2 subsquares adds to the same number S. That is,

S = A+B +D + E = B + C + E + F = D + E +G+H = E + F +H + I.

G

D

A

H

E

B

I

F

C

Problem 13. Which of the following is equivalent to C + G − A for all spooky
squares?

(A) A (B) 3E − F −H (C) B +D − E (D) F +H − E (E)♡ I

Solution. Using the two squares on the left we have A+B+D+E = D+E+G+H,
so we find A + B = G + H. Similarly using the two squares on the right, we have
B + C = H + I. Taking the difference in these equations A − C = G − I, so
I = C +G− A.

Problem 14. Complete the spooky square below. What is X + Y + Z?

X

1

2

6

Y

Z

(A) 16 (B) 17 (C)♡ 18 (D) 19 (E) 20

Solution.

G

D

1

H

2

B

I

F

6



Note in the spooky square above we have 1 + D = 6 + F and D + G = F + I.
Hence 5 = D − F = I −G. There are only two pairs of digits remaining which have
difference 5: They are {3, 8} and {4, 9}. Right now we don’t know exactly what is
what, but from the equation, we know the larger pair of digits is {D, I} = {8, 9} and
the smaller pair of digits is {F,G} = {3, 4}. Filling in the options, we get:

34

89

1

H

2

B

89

34

6

This leaves {B,H} = {5, 7}. Now we can use the symmetric fact as the one we
started with, namely that B −H = G− 1. However |B −H| = |7− 5| = 2, and as G
is restricted to 3 or 4, we must have G = 3 so that |G− 1| = 2. This fixes the entire
spooky square and the full solution is:

3

9

1

5

2

7

8

4

6

Hence X = 9, Y = 5, and Z = 4, so X + Y + Z = 18.

Problem 15. There are 376 distinct spooky squares. What is the average of all 376
spooky square sums?

(A) 17 (B) 18 (C) 19 (D)♡ 20 (E) 21

Solution. Every spooky square has a dual spooky square in which every digit x is
replaced with 10−x. Note that if a spooky square has spooky sum S = A+B+D+E,
then its dual has spooky sum

10− A+ 10−B + 10−D + 10− E = 40− S.

Hence the average of the spooky sum of a spooky square and the spooky sum of its
dual spooky square is 1

2
(S + 40 − S) = 20. Since every spooky square has a spooky

dual, the average of spooky sums over all spooky squares is also 20.

Problem 16. Five lamps are on a circular circuit, as shown below. Manually toggling
a lamp, i.e., switching it from off to on or vice versa, automatically toggles the two
lamps adjacent to it.



Initially, all lamps are switched off. What is the least number of moves (i.e.,
manual toggles) required to have them all switched on at the same time?

(A) 3 (B) 4 (C)♡ 5 (D) 6 (E) 7

Solution. First Approach: It is possible to switch all lamps on in five moves;
toggling each lamp once works, and order doesn’t matter. We show that we can do
no better.

First note that to get every lamp switched on, we need to toggle each lamp an
odd number of times, and thus the total number of times all lamps are toggled must
be odd. Since an odd number of lamps is toggled for each move, the total number of
moves then has to be odd. It remains to show that it is impossible to do it in three
moves. If it were possible to switch on all lamps in three moves, it is then possible to
switch on exactly two adjacent lamps after two turns. However, this is not possible.
After the first turn, three adjacent lamps are switched on. Depending on whether
you switch on the middle lamp (same as you toggled on the first turn), one of the
other two lamps, or one of the two lamps left switched on, the lamps switched on
will either be none, two non-adjacent lamps, or four lamps, as shown in the figure
below. For reference, we are numbering the lamp on top as 1, and counting 2, 3, 4,
5 counterclockwise. The number beside each arrow indicates the number of the lamp
toggled. A grayed out lamp is switched off; a white one is switched on.

1

2

3

Legend

1

52

43

on off

Second Approach Another way to think about this question is as a system of
equations over the finite field F2. In this finite field, the only elements are 0 and 1, and
addition (+) and multiplication (·) are defined as with the rules for even and odd, with
0 being even and 1 being odd: 0+0 = 1+1 = 0, 0+1 = 1+0 = 1, 0·0 = 0·1 = 1·0 = 0,
1 · 1 = 1. Notice that in this field, addition and subtraction are the same, and that
2 = 0.



Number the lamps 1, 2, 3, 4, 5, as previously. Let n1 be the number of times
Lamp 1 was manually toggled, and similarly define n2, n3, n4, n5. Note that the order
in which the lamps were toggled doesn’t matter, and that toggling a lamp twice has
net zero effect on the whole configuration; thus, we can take n1, n2, n3, n4, n5 to be 0
or 1, and view them as elements of F2.

The total number of times Lamp 1 is toggled, manually or automatically, is given
by n5 + n1 + n2, and we need this to equal 1 so that Lamp 1 is switched on. Similar
equations hold for the other four lamps. Thus, we have the system of equations

n5 + n1 + n2 = 1

n1 + n2 + n3 = 1

n2 + n3 + n4 = 1

n3 + n4 + n5 = 1

n4 + n5 + n1 = 1.

There are several ways to solve the above system. For instance, by adding the
first, third, and fourth equations together, we have

(n5 + n1 + n2) + (n2 + n3 + n4) + (n3 + n4 + n5) = 1 + 1 + 1

which simplifies to n1 = 1. By rotational symmetry or similarly solving, we must
have that n2 = n3 = n4 = n5 = 1 as well. Thus, viewing n1, n2, n3, n4, n5 as integers
as originally, we get a total of at least five moves.

Problem 17. In how many ways can you write 100 as an unordered sum of 1’s, 2’s,
and 3’s. Unordered here means 1+2 counts the same as 2+1 and similarly for other
rearrangements of sums.

(A) 520 (B)♡ 884 (C) 948 (D) 1020 (E) 1326

Solution. First note that any such combination has between 0 and 33 copies of 3,
and so the total number of combinations can be calculated by adding up the number
of combinations of 1 and 2 that add up to 100 − 3n, as n ranges between 0 and 33.
We then consider two separate cases:

1. n is even: In this case, 100 − 3n can be written as 100 − 6k, where k runs
between 0 and 16. Each combination of 1 and 2 adding to this value is uniquely
determined by the number of twos, which can range between 0 and 50-3k, giving
a total of 51− 3k possibilities, or a total sum of

16∑
k=0

(51− 3k)

for the even values of n.



2. n is odd: Here, 100−3n can be written as 97−6k, again with k running between
0 and 16. Here, the number of twos ranges between 0 and 48 − 3k, giving a
total of 49− 3k possibilities, or a total sum of

16∑
k=0

(49− 3k)

for the odd values of n.

Combining these two sums, we get that the total number of combinations is equal to

16∑
k=0

(100− 6k) =
16∑
k=0

100− 6
16∑
k=0

k = 1700− 3(162 + 16) = 1700− 816 = 884.

Problem 18. The number S given by the infinite sum

S =
∞∑
n=1

1

10n − 1
=

1

9
+

1

99
+

1

999
+ . . .

has decimal expansion

S = 0.d1d2d3 · · · =
∞∑
k=1

dk10
−k

where dk is the kth decimal digit after the decimal point. Find d22.

(A) 3 (B)♡ 4 (C) 5 (D) 6 (E) 7

Solution. Note that, for each n, we have

1

10n − 1
=

∞∑
m=1

10−mn

and so we have

S =
∞∑
n=1

∞∑
m=1

10−mn.

Now, for each k, we count the number of times 10−k appears in this iterated sum.
This is given by the number of ordered pairs of positive integers (m,n) with mn = k.
Since each pair is in fact uniquely determined by m, it boils down to counting the
number of divisors τ(k) of k. Thus,

S =
∞∑
k=1

τ(k)10−k.



Another, less formal way to see the above: note that 1/9 = 0.11 . . ., 1/99 = 0.0101 . . .,
1/999 = 0.001001 . . . and so on and so forth. That is,

1/ 99 . . . 9︸ ︷︷ ︸
n 9s

= 1/(10n − 1) = 0. 0 . . . 0︸ ︷︷ ︸
n−1 0s

1 . . . .

Each term 1/(10n−1) adds a 1 to every place after the decimal point that is a multiple
of n. Thus, the number of times 1 is added to the kth decimal place is given by the
number of divisors of k, which we have just called τ(k).

Comparing this to the original series suggests something like dk = τ(k). Of
course, this is not always going to be the case. For instance, we must have dk < 10,
but sometimes τ(k) ≥ 10. Also, even if τ(k) < 10, it may be that “carrying-over” in
succeeding digits adds one or more to the final digit value in the sum. This happens
exactly when

∑∞
i=k+1 τ(i)10

−i > 10−k. However, when τ(k) < 10 and there is no
carrying-over, we indeed have that dk = τ(k).

Now, we have that τ(22) = 4. To show that no carrying-over happens, it suffices
to show that

∞∑
i=23

τ(i)10−i < 10−22.

We can write
∞∑

i=23

τ(i)10−i = τ(23)10−23 + τ(24)10−24 +
∞∑

i=25

τ(i)10−i

= 2 · 10−23 + 8 · 10−24 +
∞∑
k=1

τ(k + 24)10−(k+24)

= 2 · 10−23 + 8 · 10−24 + 10−24

∞∑
k=1

τ(k + 24)10−k.

Note that τ(n) < n for all n; we thus have τ(k+24) ≤ k+24 ≤ 25k for all k ≥ 1.
Now, we have that

∞∑
k=1

k10−k =
∞∑
k=1

k∑
i=1

10−k

=
∞∑
i=1

∞∑
k=i

10−k

=
∞∑
i=1

1

9
10−i+1

=
1

9
· 10
9

=
10

81
.

Informally: we may write the infinite sum
∑∞

k=1 10
k as

10−1 + 10−2 + 10−3 + . . .
+ 10−2 + 10−3 + . . .

+ 10−3 +
. . .



Summing by column first, then adding all the column sums gives the original
series; summing first by row instead gives us a geometric series of geometric series as
in above.

(For those who know calculus, we may also obtain the above by differentiating
the geometric series for 1/(1− x) =

∑∞
k=0 x

k and multiplying by x, then substituting
x = 1/10.)

This gives us that

∞∑
k=23

τ(k)10−k ≤ 2 · 10−23 + 8 · 10−24 + 10−24 · 25
∞∑
k=1

k10−k

= 2 · 10−23 + 8 · 10−24 + 25 · 10−24 · 10
81

= 10−24

(
28 +

250

81

)
< 10−24(100) = 10−22

as desired. That is, there is no carrying over, and so d22 = τ(22) = 4.
Aside: In fact, Paul Erdős proved S is irrational in his 1948 paper On arithmetical

properties of Lambert series.

Problem 19. The nonzero digits A, B, C, D are such that the two-digit number
AB divides the two-digit number CD, and the four-digit number ABCD is a perfect
square. Find A+B + C +D.

(A) 9 (B) 12 (C) 16 (D)♡ 18 (E) 25

Solution. A guess and check approach is available: Checking the small four-digit
squares, we have 322 = 1024, 332 = 1089, 342 = 1156, 352 = 1225, 362 = 1296.
Indeed, for the last, 12 divides 96. Thus, we have 1 + 2 + 9 + 6 = 18.

A rigorous approach to the problem is as follows: We can write AB = n,CD = kn
for some constant k; we then have ABCD = (100 + k)n. Note that k must be small;
in fact, it must be a decimal digit as well.

Now, we recall that any positive integer m can be written uniquely as m = d2m′

where m′ is the squarefree part of m, that is, the largest squarefree (not divisible by
any perfect square greater than 1) number dividing m. More specifically, m′ is the
product of all primes that appear an odd number of times in the prime factorization
of m. Moreover, the product of two positive integers is a square if and only if they
have the same squarefree part. As ABCD = (100 + k)n is a square, we must have
100 + k = c2n′, n = d2n′ for some positive integers c, d, n′ with n′ squarefree. Below
is a table showing the factorization and squarefree part of 100 + k for 1 ≤ k ≤ 9:



k Prime factorization of 100 + k Squarefree part (n′)
1 101 = 101 101
2 102 = 2 · 3 · 17 102
3 103 = 103 103
4 104 = 23 · 13 26
5 105 = 3 · 5 · 7 105
6 106 = 2 · 53 106
7 107 = 107 107
8 108 = 22 · 33 3
9 109 = 109 109

From the above table, we can see that k = 4 or k = 8; otherwise, n′ > 100, and
this cannot be because n′ divides a two-digit number n. Now, if k = 4, we have
n′ = 26, and so n = 26d2 for some positive integer d. The only possibility here is that
d = 1, and so n = 26. However, we then get that kn = 4 · 26 = 104, which is not a
two-digit number.

This leaves only the possibility k = 8, and n′ = 3. We must have n = 3d2 for
some positive integer d; since n is a two-digit number we must have d ≥ 2. However,
kn = 8 · 3d2 = 24d2 is also a two-digit number, and so d ≤ 2 as well. Thus in fact
d = 2, and indeed we get AB = n = 12, CD = 8n = 96, and ABCD = 1296 = 362.
We have A+B + C +D = 1 + 2 + 9 + 6 = 18.

Problem 20. Leda squares a positive integer and observes that its first (that is,
leftmost) X digits are all the same (and nonzero). What is the largest possible value
of X?

(A) 2 (B) 3 (C) 4 (D) 5 (E)♡ There is no largest

Solution. In general, the interval starting with n 1s and ending with m arbitrary
digits can be written as [

10n − 1

9
10m,

(
10n − 1

9
+ 1

)
10m

)
.

We can guarantee a square in this interval if the difference in the square roots of
the upper and lower endpoints is bigger than 1 (as that would mean there is some
integer between their roots). However for a fixed n, the difference in the square roots
is proportional to 10m/2 which can be made arbitrarily large by choosing m large.
Hence there is no limit to the number of leading identical digits of a square.

Actually, it’s also possible to give an explicit construction of a number with n



leading 1s. Note

33 . . . 3︸ ︷︷ ︸
n−1

42 =

(
10n + 2

3

)2

=
1

9

(
102n + 4 · 10n + 4

)
=

102n − 1

9
+

4 (10n − 1)

9
+ 1

= 11 . . . 1︸ ︷︷ ︸
n

55 . . . 5︸ ︷︷ ︸
n−1

6

Problem 21. Edna squares a positive integer and observes that its last (that is,
rightmost) X digits are all the same (and nonzero). What is the largest possible
value of X?

(A) 2 (B)♡ 3 (C) 4 (D) 5 (E) There is no largest

Solution. Let’s think about what the possible digit D is, if we want X large. By
computing the squares of the numbers 1, 2, ..., 9, one sees that to have X ≥ 1 copies
of the digit D at the end of a square, one needs D to be one of 1, 4, 5, 6, or 9.

Suppose X ≥ 2. Then our square has the form 100M +DD for some integer M .
Looking mod 4 gives that n ≡ DD (mod 4). So DD better be a square mod 4. This
rules out D = 1, 5, 6, and 9. So the only possibility is D = 4.

It is possible for a square to end in 444: 382 = 1444. So X ≥ 3 is possible.
However, X ≥ 4 is impossible. In order to have X ≥ 4, we would need D = 4,

and our square n2 (say) would end in 4444. That is, n2 = 10000M + 4444 for some
M . Clearly, n is even, say n = 2m. But then m2 = 2500M + 1111, yielding a square
ending in 11. But we ruled this out above (see the X ≥ 2 discussion).

This completes the proof, but there’s still the question of how the 38 was discov-
ered. Here’s one “story” for this. It’s easy to find a square that ends in 44, namely 122.
It’s then clear that the square of 100M +12 will always end in 44. Let’s look at these
numbers a little more closely. FOILing out, (100M+12)2 = 10000M2+2400M+144.
Taking this mod 1000, the last three digits are the same as those of 400M+144. Sub-
tracting the 44 and dividing by 100, we find that the digit in the hundreds place of
our square is congruent to 4M +1 (mod 10). This is a bust as far as finding a square
that ends in 444, since we can’t make 4M + 1 ≡ 4 (mod 10). But we can be slightly
more clever and observe that the same idea works for 50M + 12. Doing the algebra,
we find the hundreds digit of our square is now congruent mod 10 to 5M2 + 2M + 1.
And we can choose M to make that expression congruent to 4 mod 10; any M ≡ −1
(mod 10) will work. So for example, M = 9 is ok, and 50 ∗ 9+ 12 = 462 has a square
ending in 444 (its square turns out to be 213444). OK, what about 38? Well, one
can be just a little cleverer still and notice the square of 50M − 12 also always ends
in 44. One can carry out the calculations as above, or one can just try M = 1 and
notice it works immediately.



Problem 22. Consider an L shaped room made of three square parts arranged as in
the picture below. If the walls do not reflect light, what is the expected proportion of
the room which is lit when a bulb is placed randomly inside the room. In the example
illustrated below, the bulb illuminates 23

24
of the room.

(A) 5
6

(B)♡ 8
9

(C) 11
12

(D) 14
15

(E) 17
18

Solution. Let us decompose the room into the three squares that make it. The
probability to have the bulb in any of those squares is 1

3
.

If the bulb is placed in the upper right square, it lights the whole room. Take a bulb
(b) in the lower right square and consider its reflection (b’) over the diagonal going
from the NW corner to the SE corner (see image below). Both these bulbs completely
light the lower right square and the upper right square.

By symmetry, they light on average half of the upper left square. I.e. on average
(b) and (b’) light 1

3
+ 1

3
+ 1

2
· 1
3
= 5

6
of the room.

The same argument holds if the bulb is in the upper left square.
All in all, the expected proportion of the room that is lit is 1

3
+ 2 · 1

3
· 5
6
= 8

9
.

Problem 23. Anna has defined a new operation, which she calls ⋆, on pairs of real
numbers: if P = (x, y) and Q = (x′, y′) then she lets P ⋆ Q = (x′′, y′′) as{

x′′ = xx′ − yy′

y′′ = xy′ + x′y
.

Lisa picks R to be the pair
(√

3
2
, 1
2

)
and tells Anna, “I know what the value of

R ⋆ · · · ⋆ R︸ ︷︷ ︸
2022 copies of R

is!” Can you find the result of Lisa’s computation?



(A)♡ (−1, 0) (B)
(
−

√
3
2
, 1
2

)
(C)

(
1
2
,
√
3
2

)
(D)

(√
3
2
, 1
2

)
(E) (1, 0)

Solution. Notice that if P and Q lie on the unit circle, the operation defining ⋆ is the
law of addition for cosines and sines. I.e. if P = (cosα, sinα) and Q = (sin β, cos β)
then P ⋆ Q = (cos(α + β), sin(α + β)).
Notice that Lisa’s R is nothing but (cos π

6
, sin π

6
). Since 2022 = 6 · 337, the result of

Lisa’s computation is (cosπ, sin π) or (−1, 0).

Problem 24. How many positive integers n with 1 ≤ n ≤ 2022 are there that cannot
be written in the form n = k + ⌊log2 k⌋ for some k? Here, ⌊x⌋ denotes the greatest
integer less than or equal to x.

(A) 9 (B)♡ 10 (C) 11 (D) 12 (E) 13

Solution. First approach: Define the function f by f(k) = k + ⌊log2 k⌋. We start
by listing a few values of f(k):

f(1) = 1

f(2) = 2 + 1 = 3

f(3) = 3 + 1 = 4

f(4) = 4 + 2 = 6

...

Observe that all the jumps are happening at the powers of 2. We have f(2m) = 2m+m,
f(2m−1) = (2m−1)+(m−1) = 2m+m−2. That is, we are losing numbers of the form
2m +m− 1. To show that these are the only ones we lose, observe that any positive
integer n can be written in the form 2m + d for some 1 ≤ d ≤ 2m. If m ≤ d ≤ 2m, we
have 2m+d = 2m+(d−m)+m; we then have f(2m+d−m) = 2m+d = n as desired.
On the other hand, if 0 ≤ d < m−1, we have 2m+d = 2m+d−(m−1)+(m−1); then
we have, since d−(m−1) < 0, f(2m+d−(m−1)) = 2m+d−(m−1)+(m−1) = 2m+d.
However, there is no k for which f(k) = 2m +m − 1. This is because if k < 2m, we
have f(k) ≤ (2m − 1)+ (m− 1) = 2m +m− 2; on the other hand, if k ≥ 2m, we must
have f(k) ≥ 2m +m.

The only thing left to do is count all integers n = 2m+m−1 with 1 ≤ n ≤ 2022. We
have atm = 10, 210+9 = 1033 < 2022, but atm = 11 we have 211+10 = 2058 > 2022.
Thus there are 10 such integers.

Second approach: Define the function f as in Solution 1. Observe that f is a
strictly increasing function, and so f(1) < f(2) < . . . Now, notice that f(2048) =
f(211) = 211 + 11 = 2059 is a little higher than 2022, but not too much. Moving
a little lower, we have f(2047) = 2047 + 10 = 2057, f(2046) = 2046 + 10 = 2056,
and so on and so forth; it seems reasonable to surmise that f(k) goes down by 1
most of the time when k does, and thus starting from f(2047) = 2057, going down
by 2057− 2022 = 35 gives us f(2047− 35) = f(2012) = 2012 + 10 = 2022. Thus we
have 1 = f(1) < f(2) < · · · < f(2012) = 2022 are 2012 integers n with 1 ≤ n ≤ 2022



of the form n = f(k). Since f is increasing, for any k > 2012 we have f(k) > 2022;
these are thus in fact the only such integers. That is, there are 2012 integers n with
1 ≤ n ≤ 2022 such that n = f(k) for some k, and so there are 2022− 2012 = 10 that
are not.

Problem 25. A magic square is a grid with numbers such that the sum of all entries
in any given row, column or diagonal is a fixed constant.

Consider a magic square, all whose entries are strictly positive integers (but not
necessarily distinct), and of which only one of the entries is known:

X

9

What is the minimal possible value of the entry in the upper left corner?

(A) 1 (B) 2 (C) 3 (D) 4 (E)♡ 5

Solution.
Let us label the squares as below :

X A B

C D

9 E

The following is a somewhat magical identity: Note

(A+ C + 9) + (B +D + E) = (X + A+B) + (X + C + E)



reduces to 9 + D = 2X, so X is the average of 9 and D. Since D is at least 1, we
have X ≥ 5. To see that this is actually attainable, here is a valid magic square.

5 1 9

9 5 1

1 9 5

Note: In practice, there are a lot of ways to equation bash to find that 9+D = 2X,
the above solution method is just the shortest such way the authors were able to find.

Authors. Written by Paco Adajar, Jimmy Dillies, Mo Hendon, Tekin Karadag,
Paul Pollack, Casia Siegel, and Peter Woolfitt.


