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CURBRENT STATUS OF THE RESOLUTION FROBLEM

by

Shreeram 5, Abhyankar

1, The problam apd its history,

Tha problam can ba atatad thus:

Basolution Froblam, Given g function field K over a paevdogeometsic

Dedaldrd dormaln k does there exlot a nonsingular projactive madal of K
over k7

Before giving the history of the problem 1=t uk recall the definitions of

the tera vaed abowve,

DEFINITION, By a Dedekind domal we mean a aormal {1. e., integrally
closad In its guaotent field) peoatherian {integral} demaln in which svezy
nonzerg prime ldeal is maximal; note that then any field 10 a Degaldnd domain,
& ring {commutatdve with jdentity) k 1s dzid to be paeudogeometric If k in
noatharlan and {or avery prime jdeal P in k we have that the incegral
clogure of /P lo any finita algebraic extenslon of the quotlent field of
k/P im a finjta {k/P]-module, WNote that: every feld ia paeudageametiic;
evary Dadeldnd domaln of charactariatic zero 13 pasepdogeometric; a Dadakdnd
domaln k 18 pasudogeornatric if and only if the integrzl clogure of k in any

finite algebralc extepslon of the quotient fleld of k ls a finlte k-module,



By an affion ring over a domain k we tnean an overdomala of k which l»

a finikely generated ring extension of k. A local ring (i.2.; & npetherlan
ring with a unlgue maximal ideal] B la said to ba a apot over a domaln k
if R is tha gquotHent ring ‘PP of an affine ring A avar k with reapect to a
prirme idesl P in A, The significence of the aotion of peeudogeemetris ix
the thecrarn of Nagata fo the effect that If k 1a a pacudogerometric domaln
tHhwn nvavy affine zing over k 1ls parudogeornetric and so in avery spot over
k., By gz functon fleld over a domaln k we mean z field E which 1= a spot
over Kk, l,¢., K in the quotiaot field of an sfflne ring over k, Glven a
funcdon field K over a domain k, by a projective meodel of X over k

w8 mean a nenempty saet ¥ of local domalne with quetientfiald K puch that there

uxﬂata;ﬂnﬂa number af nonzerd =iements HD' - .:um in K such that
¥ = iEn ¥, whers V, is the set of all quotient rings of k{xﬂfxln.u:‘mf"xi]
with reapect ta the varioua prime ideals in k[xu,.-"'xi, ewas xm,n"':r.i] : V is pald
to be nonsingwar if every elgment ln ¥ is regular,

History, Let K be a functlon feld over s pasudogeometric Dedeidnd
domain k, let n' be the transcendence degree of K over the quotient fleld
of k, and lat n be the absclute dirmension of K over k, i.e., n= p' if
k isz Hald, sd o = L + n' f k fo nota field, The Eegclutien Problam
has been assttled affirmatively la the follewing casee: For n = 1 the solution

1s classical, For o = 2 and k = the field of caomplax numbara, after

several poesible solutions by the Italians (notably by Alabaokse and Levi)



3, 5

the first rigorous sclutdon wans givean by Walker in 1935; Waller's solution
taken use of the local solution {1, e, . solutlon of the local uniformizadon
problem which is the localized version of the Resolutdog Preoblem] forx

the field of complex numbers given by Jung in 1904 in

n = 2 and Kk
tha Crells Journgl, Whean k 1a a fleld of characteristic zearo, Zarisld gave
asolutbon for n = & Inl93% - 1942 andfor n = 3 in 1944; in 1940
Zarleki alao gave e local aclutdon for n arbitraty and k = a fieid of
chazacteriatic rero, For n 2 2 and k o a perfect feld, Abhyankar gave

a aolutlom in 1956, Finally, in 1964 Hironaka gave a scluton for n arblirary
grd k = a {leld of charactaristic zaro, All theae are publication datas and =zl
the solutiona beginning with Walker's appeared io the Annals of Mathematics,
For n = 2, z rigorous rarsion of Albanege's proof was given by Artin in

the spring of 1963 which works when k is an algebraleally closed fiald of
charactarigtc different from 2, In November 1563 1 gave a scluton when

n = 2 and k/P ia perfact for every maximal ideal P in k; this praof of
the Arlthmetical Case i9 being published, In the last faw months I have
obtained a solution for o = 3 and k = an algebralcally ciosed fisld

{of any characterlistic]; to be on the safe side here I should eay that fhia

is a poasible sclutlon in the sanae that I have

proved several pieced and I roughly sea how to pot them togather but as

yet [ dld not have the time to wrlte up these pelces syatematically and o

fit them together, In any case my present Investigations hava just begun and

they would take & year or more to sun their full ¢coursn, Se actually I weould



have been happler to glve today's talk after a year or ao becavee thenl

could have aimply eaid that thie is what I can prove and this 1§ what I cannot,
Preasntly I can only say what is cooking, The reason why after a lapae of
mome aight yeara [ have coms back bt the resclution problam is twolold.

The primary reason waa that the fall of 1563 was the fieat tlme after 1955
when I got an oppertunity to be In Zarieki's nelghbourhoodnet a Zariek
naighkourhood); it is a theorem that to reacive slngularites it is necessary
to be near Zariakd; the resclutlon probiers conaiste of proving the sufliclency
of thie conditicn, The secondary reasoo was that after Hironaka's outstanding
wark in characteriatic eero, I heard a story from several people io the effact!
"W have haard that you are planning to take over the work on tha problam
where Hironaka has left it off”, Although [ waa dafinitely not the scurce of

this rumour, naverthelmas 1t prompted me to work,

2. Embedded resclution

Today 1 shall say nothicg about the arithmetical case, Henceferth all

varietiea will ba defined over an algebralcally closed ground feld of

characterietic p which may or may not be zarc, Haviog once atated the

problam preclaely, hepceforth I ahall apeak guite informally, A common
feature of all the ghove clted procfa is that to prove resolution for dimension

f one needs a strongsz result for dimenslon leas than n which Includes at



leaat the fullowloag:

Embedded Resolution, Glven a nonalnguiar protective algebralc

variety W of ddmension o and glven a hypsreuriace H in W, fhere axlate
a composite monoidal trangformaton q @ W' == W guch that the tofal
transform q'l{H} of H hzs only normal crossings.

CGonrerolng the defindidone of the tarma uead above I ahall say anly
this: Given any irreducible subvariety U of an lrredecible algebralo
varfety W there sxdats a well deflned birational map gt W' —> W
Antlacd tha Gaopoldal troneformation of W with canter [r; g ia blregular
on W -D: i W and D are ponainguiar then woda W' ;if D laz point
then g i# called tha quadratic transformation with center L. If
9 : ‘l-".-l -— W, qz: -ﬁz —_— wl."”':-qt: wl —_— thl lg a
seguenca of moncidal tranaformations with nonsingular centers than the
reaulting biratlonal map q: Wt —> W ig called a compaalte moncidal
traneformation, Henceforth all monoldal tranaformations will be assumed
to hava nondlogular centera, A byperwurface H ina nonglogular variety
W is #ald to have ooly normal cocseinga if for wvery point P of W there

XiranapXx 0N W
axlat regnlar parameters Mat & guch that H ta defined by x

II-I-Im =

at F for some m 3 n .

Ugually, after Embeddad Rasolution for n and befors Reaeclution fur

o oo# proves the fellowlng:



Dommlnance (or removal of polnte of indeterminacy}. Glven two

noneipngular projeactive modala W apnd W* of pn o dimensional function
Held, there exists a composite monoidal traneformation W! —* W auch

that W' demingktess W

Concarning Embedded Resclution [ can dafinitely szy that 1 have a proof

for m = 3 in any characteristle; and E:i_n__is the mafor step in the posalblae

—
- . -
¥ ]

preof of Resclutlon for n = 3 fwhich I spoke'nfy Another dividandol this

result 1s that I ballave oow can now prove the biratonal Iavariance of the
arithmetic genus for dlmenslon 3, In iy proci of Embedded Resclutdon
fer o = 3 Idraw heavily {rom Zarlsid’s proof of the game result in
charactaristic zero which ke gave In 1944 and alsc from the slmplified

proof of this which Zarisld gave in a pote In 1962 in the Rendicontl. .. Lincel,

83. Paculiarides of DORIETO charactacigt e

i ahall now make varlous commants as to how the cass p ¥ O diffars
from the case p =  and what are the possible ways 1o make up for thie
difference, Lat pie say explicltdy that it is not my purpose to find a proo
which will be ssapntally gew for p = 0. I am only tryving to develop an
algorithm or 3 caleulus in p # 0 which will anable us to modlly any given

proof {of resclutdon} for p = O o that it will work aleo for p F o,

{1) Binomial theorsm,. Algebralcally speaking, the baslc reason why

the p = 0 proofalof Zariaki and Hironaka) fail for p ¥ 0 i thia:
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Let

Z+ V)7 = 274 2™ 4 azzm-*?"-'* ven H YO,

Than a, 0 iUmFE 0Ofp), and a, = 0 if m = dlp) . More

generally let

fizy = 2% 4 f]zm‘l * o A
and
-1
gzl = H2 +¥) = 2" + g 277 4 L.+ g .
1 m
Then what {g the ralatdonahip babwasn the Ii and the gj. i.=,, which of the
fi affect a partleular gj and how much?
(2] An example of (1), Let
v: G[zl"""‘zn{-]_: - ﬂ

be an algebroid hypersurface inthe n + 1 diménsional lecal space F‘nﬂ a

Let m ba the multiplleity of ¥, Then upon making 2 llaear traraformation
antd lnvoking the Waisretraps Freparation Theorerm we gat

I I -
Y 2 + glt?lllu-p.‘f“'zm- * . + gm{?lll'ilTn} = 0

whe ra gi{ﬂ....,ﬂ:l = 0O, Let g ba the product of those gi which z2re non-

aers, Lat

H H EIYIJIII‘}YR} = i} [



Then H ir an hyperasurfzce in the n dimensicnal local spacs 2 . Apply
Ernbeddad Resclution to gét a compoalte monoldal traneformation

g B —= .F;n such that q'l'[H] hae only nortnal croasings, Laet
Fieeee, X Do suitable parametere at a point P in B, This amcunts ta
subeatituting certzin power serinm ul{}‘{l,. . ,J{nj ¥ oemid un{:{l, “res }l.’n]

for ‘fl,...,?n in gl[‘i'l..”..‘!l!'nll so that

- z(l} a{n}
E{ul{xl"".xu}‘l.'lun{:{li.--an}] - E{xlltvur}:n}xl ill:{n

wWha o g'l[ﬂ,...,ﬂ} £ 0 and afly yonayp aln} zre nonokgative intagere,
Then ackhzally

a.{l; 1} }[E{i, ﬂ.:

Bl (X yeees X drannpu (X uuay X 0 = gl (X)snues & MK .

for all i f[or which 8 < 0, where gi{ﬂ....,ﬂ} F 0 and afi,j} are

ronnegative fotepars, q induceg g®: B & A —» 4 Lag Vo be

1 ]l "

the proper trangform of V by qt'l » Than at the poiat [P0, V¥ ia given

by

-ﬂ.{i[lj }Ea{lfn} zm-i - {
1

vy ;20 E B (K aans XX
0<iZm,g #0
For the sake of uirf!:nlicit],r lat us guppose that afl,j} = 0 whemever j ¥ 1.
Lat b be the greatest integer such that b © gafl,1}/i for all i fox
which g, # 0. Then aff',1} = b’ < ' for mome if ., Maka the
b

compaglte monnidal transformation given by : Z = z* 3{1 « Let ¥ e



4.

the propar tranaform of ¥* under this transiormatien, Let © ba a point
of ¥'. Then thare exists a unique slement d in k such that "Z% =dat O
Let Z' = Za . g, Then Hl""'xn ¢ & are parametera at T and at O

we havyae

LR f[xlltiil}:‘nl Zty = 0
whars
fﬂ'{lilll::{nrz‘i

a{l, 1}=bi

, (zr « @™

-z ™ « . z §]{X, 0 u ey X )X
0<i= m, gl_rfﬂ
1ot m* be the multplicity of V' at 0, Since afi',1} - bi' < i* fnr some
i' v woget that if d = 0 then m' < m} 2 reduction! 5o now suppose that
d # 0. Atthia paint there are various agaentially equivalent waya of
argulng provided m ¥ 0{p) . For instance, following Hironaka, we can rnake
the inittal coordinate transformaton £ —» Z - {1 fm}gl which will have

m-=1

the gifect that the cosfflcient of 2 wiil be zoro, L e., we will then have

By T 0 and hapce

Hr oK g2 = 274 amz Tl

+ tarmg of degree lesa than -1 in 27,
Then m' € m becauss dm ¥ ¢, However If tn = Glp! then in the flret
place we cannot make the traneformation Z — {],-"rn}gl, aod in the second

place even If By Was zero to beglo with we sHil cannot conelude that m' € m
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because now dm = 0, We shall now make several cheervations,

(3). Peculiarity arises when the multiplcity {a divisible by p,

(4} The moet primitive case of the above pacullarity I8 afforded bBy:
zF | g{¥,sr.0, Y } = 0. The two dimension case (Le., n= ZI of thia
wae axplicitly mentlonad by Farisld in bls 1950 addresa and there he pro-
neunced 1t "intractable™ .

(3} It is not necesdary to kll El completely, l.e., itis sncugh to
I3l the terme of low degras in & Because then a{l,l} * b and hanca

. in f{Z' will ba a unlt, In any caas if wa have

again the coefficisent of Za
all,!} > b thea we are all right, In other words, the }:Iuvalua =13 8y
should be big emcugh compared to the X, -valuan of the other g,, H

m ® O{p} then of course £y doas not play the dominant rols, But it

turna out that even then we would beldn a reascnable shape if aay
> .
{xl value af E‘I.] = {ifml[:{l-valua of gm} Ior 1 = lyewasil.

It v2n bs showm that if the above Inegquality falla for some 1 then xl must

aplit in tha covering V' —> (space of }Cl,...,]{n‘,l g laggy, 3":1 muat aplit
in the field extension given by fi_'}[l, sam ,]'{n. &t « 8o anm ahould try to

arrange that X. does not gplit,

1
(5], In the ganeral case, 1,0, ,when one does not assume afl,j} = o
for ] # 1, one tries to arrange mattare ao that for any 1 § i* elther

g, dividea g, or g, dividea g, i.,e., either afi,j : a{i*, i} for
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all 3 ar afiw, ) E afl,j) for all . Thia really means that inatead of
oaly applylng "Embedded Reaclutden” we alas lovoke "'Dominance”, In
thie general case oone should accordingly try to arrange that each of the xj
which dccur with a poaltive exponent doaa not aplit in the field axtennion

glvan by f,

{7 Instead of killing g+ Zariaki used differentlation arguments,
But than after all the Mnomial theecrem and differsntdadon are in essence
ote and the aame thing,

In g4 and 85 T phall further elucidate ohaervations (51 and (4}

reapactvely,

ﬂ-i. NannElltl:lnE

Let W bm a nonelogular projactve algebrale variaty of dimension o

and let ¥ ba the noermalization of VW in a finite algebralc ssparable

exthneion of the functon fleld of W, l.=., we hava a covering map

¥ —> W, Let D ba tha branch locus on W. By Embedded Resolution

we can find a composite monaldal trznsformation gq: W' == W  such that
q-]{ﬂl has oely normal crossings., Let h; ¥' —> W' ba the corra sponding
covarlng map and fet D' be the branch locus on W', Then D' o q""I.’D} '

it can then be shown if p = 0 {or more gensrally 4f V! —> W' {n s tame

covering) than the irreducible components of q-lfD] do not apllt locally on
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Vi, Le,, f P' E V! }loea above 2 £ Wt and T e any irreducible
compoenent of q'l{ﬂ, at ™' than only one locally irreducible component
af h-ll[E:I paases through P' . In other worde, 1f £{2) = 2™ 4 g, Em-l +
1aat g fa a loral egquation of the covering F' —3+ {Jf and :.'-:1, .ia 'xn
are paramatara at ' such that q-lfD} = {]{1 En = 0) then for

£ = lysaus n we have that the valuatien at ' given by Il does not

¥wlit i1 the flald extension given by {[Z), Thus what wag achieved by
Hironaka by killing g, and by Zarleki by uaing differentlation arguments
can alec be achieved by eimplifying the branch locus, The idea of
simnplifying the branch locus ta resolve the singulzrities of ¥ wae
actually used by Jung for n = 2 ang k = the flald of complax numhberg,
and it was alss proposed by Zariskd (1954: Pulletln des Sclences
Mathematiques ) as a possible mathod of resclukinn of pipgularitien for all

n when p = 0 ; also Zariski used this idea ln his Lincej note cited In

42, DBoth of them used this anly i3 have a nice atructure for the local

ring of P and oot for the nonsplitting buainass, However, wa thus zee
that thia Junglan methad of slmplifying the branch locus fl.e,, transforming
the dfacrimicant Into a monomial times a unit} aod the Zarfaki-Hlronaka
methed of tranaforinlag the coelflciants inte monomiala timas unite are in

sscencs very clopely ralsated, although they may net zppear ao at frst

gight,
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Actually in 1953, Zgrigkl had suggesrad to me to atudy Jung's
method and te sae whether it could be used for resclution of slngularitea
of a surface ln p # 0. Atthat Hme I ended up by showing that in
p # 0 : the lacal Galols group zbove a almple point of the branch locus
can ba unsplvable, and a point Iyiag abave & almple polnt of the branch locus
can b singular, and hepce Jung'a method cannol be uged., The exampiea
were publizhed in 1955% 1n the 2Amerlcan Journal where 1t was shown that
they can occur only for oontame coverings., Thare [ aiso showed that
although the nonsplifiing holde for tame coverlnga, in gensral it does not,
and I want oa to comment that! thiv "local splitdng of a sirmople branch
varlaty by lteelf' | the real reamon behind the pecullarity in p £0,
Later on In 3 1957 paper io the American Journal 1 explolted a almilar
spiitting of a branch polot on a curva to gat results ke the followlngr avery
curve in p F 0 can be projectad ooto the projectlve Ilae o a9 vo have only
one branch point . On the other hand, in a aeriepg of papers publishad
in the American Journal In 1959-1960 I uged the nonapliting for tame
covarings to study the tame fundamental group of an algabrale variety,

Now after elght years the clrcle is completed, Namely; it turned cut
that ({or a coveriag of 3 surface whars the covering degrae 1s aither not
divislble by p or im a powsr of p} LIf we keep applylng guadratlc trane-

formatione, sven after the stage when the branch locus has enly nerrnal
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cIrosdlngs, then eventually we ghall reach a mtage whan ws have
nonaplitting; and what fe more important la that we can reach a
stage which is atabla, i.e,, when the aonspltHng 1a oot dastroyed by
applying more gquadratic tranaformaztions: oeedleas to remark that the
numibar of quadratic transformatlons requirad ko achieve such a etabis
nonsplitting stage deapends on the given covering, Marsover, in the and
we peuch a Junglen situatlon after all, This realizaton was forced upon
e by working on the arithmatical case lz which no alagle methed agemn
te work by itself, The arriving at & stable nonaplitting stage is alsc the
mals aovel zopact of my proaf of Embedded Resclutlon for o = 3, i,e,,
for surfacen,

All thia leads me to poea the following conjectural supplemant to

Embedded Regolutdon,

Supplement 1 . Lat W be 3 aonsingular projective algabraic variaty
vf dimenaion ny lat ¥V be the pormalization of W In s finite algabreic
eeparable extenslion of the functlen field of W, and lak U Be the branch
locus on W for the coverlng ¥ -—> W ., You may aesume that I has
only normal cxpaglngy. Fipd a compesite monoidal transformation
q: W! — W puch that nonepHiting holde for q-] (D} relative to the

corrosponding covaring ¥' —+ W', Do this in some stabls senee,
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It s proposed 1o use this aa an inductive atep in the general

rasclutHon prablem,

Rs, Upite cannct be n:E.Luctad

Let ue now consider the primitive caps
Vi ZP - gy, Y <0,

The nonsplting business clsarly has no bearing on thia, By Embeddad
Resolution we cap achisve

1
¥ ..., Y)) = gugxl,__.,:-:n}:-:‘;‘{ N

where g'(0,4,4,00 F 0. If at Jeast one of the afl) is not divisible by p
then we canp do &nmath.lng. Bur if aﬂ.j [ ﬂh}" farall 1 ﬁﬂnupun making a

compaalte moneldal traneformation wa get
v't zlp - E‘{:"{]l!!!rxn] = L1
whete
g*{xlliril Kn} = Er[xlllii#xn} - E‘{ﬂr-fnrﬂll

5o we achleved nothlng becanae the order of g"{}il. . .}En} may #ven ba
graater than the order of g{'fl. P 'l'n': « In other worde,ip p 7 0 w=a

caanct neglact the wpit g'l:l’{l, - .,Kn}l. A simllar altwatdon prevaile for

i3
vy z? . §¥e.,Y) = 0.
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Thug we are led to another conjectural supplamant to Embedded Rosolution ;
thlie one cannot be formulated completely geometrically, 1,=., wé cannot
talk of 3 hypergurface but we muat actually deal with a powar sarlas,

hecguse we are now not Intereated in a priaclpal ideal but ln a apecliilc

power gerles,

Supplement 2, Let m = p-u where u is a positive integer, Let
g be an elemant in the power sazriwas ting k[{Y]. anny Yn]] such that

E F H[YT"., . ?:1 J}» Flod a compoalte menoidal transformastion

gt B = An y Where .H.n ia the local space of '!l'l,...” Tn ¢ such that at any

P £ B there exist puitable parametere X ..., X such that upon

1
considering g ad an slement ie k{[xl reas 'InH wa have that

afll
1

I

g = b + IX E""[z'i} ms’

LN ] x
[+

where aflly,..,ain) are ponnegative integers and h and g*  are
alemants in I-::[['.'—"El,.... ,H“]] such that 0 < [orderof g') < m,

Actually thia 1a not entirely aatisfactory because it 1s not o stable
gitzation, Ooe muet ask for 2 stable sltuntdon, Here I shall not poreas
this matter furthar hacauss thitgs would get too tecknical,

£0 puch the primitive case may not ocour In praceloe Becauss we can
chooan a atparatlng cranscendonce basis, otc, However, in the separable

Co.ga
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ZP + Elf‘fllllll?‘n}zp-l + LI | +gp{T1'llllYn}

the noneplitting businaas will help anly to ses to Lt that Byrvene EF i
do oot intsfore too much, The game Ls stll to be played with Ep' In

othey worda, 1t ie proposed that:
(general cave } = (primitive case] + {nonsplitting}.

Anyway, thia is haw I cazry ont thinga for eurfaces,

g6, Rensclutdon for :nﬂﬂniu

I ahall conclude by mentiening & mors generzl regeludon problem
whick 18 of intereat {a 1tnslf and gome form of which may very well be useful
in an inductlve eet up for the origloal rescluton problem

{1}, Give an intricsic definition of = Junglan local domain, L. e,,
of a normal local domain which 1a case of characteristc zere can be projected
onta a Tagular local demale ac that the branck locus hae a normal croselng;
{for dimeneion 2 I have done this in a forthcoming paper}.

{2). Given a function Beld K and n finite algebraie separable
extenalon L of K, dows there exist a nonsingular modal of K whode
nortnglvation in L is Junglan?

{3). Given » funcHon field K and a flnite algebraic separable

extenaion L of K, doewe there exist 2 Jungian model of K whoae
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normalization in L is nonsingular?
I akall ooly remark that {3 is nontrivial aven when the characteriatc

ia zuro and wa reguiras the model of K to te only normal,



EQUIVALENCES AND LEFORMATIONS OF
ISOLATED SINGULARITIES

by . Hirooaka

When I speak of deformaticons of isolated singular points on algebraic
achemes, Lhe basic setup ia as {oillows:

Ti: X=*Y¥ is a morphism of scchemes, Y is g nattherian scheme, T @5 of

finite type and flat, £: ¥ —= X iz a morphiern such that #-£ = identity, #

s smooth on X - 2{Y }, and all the fibres :Ilf1JIr =i {vl, y€ 7Y, are reduced

and equidimensional {i.e., all the irreducible compononte of HY hawve the

gxme dimension), Here the word "smooth” means that if x Iz any point of
X-e[YT]) then |assurming that ¥ is affine, say Specc{A). without any luss
of generalily] T ie degcompoeed into 2p €tale morphism from 2 neighborhood
of X in X to EE [ & [tI ey tn:l} .and the projection from thie spectrum
te ¥ = Spec (A}, where n = the dimension of the fibres of . It follows
fxom the asaumptionz, that the [ibre x*_.r Ior each ¥y € Y is pon- gingular,
except {or the poasible singularity at ey} € }l.'}, + Thus we have a family of
algebraic schemes with (poasible } iaolated ginpular points, [ {I?, iyl
which are paramwtrized by the poiots of Y, ¥ Y iz a non- zingular curve,
then the {lataess of T meana zimply that every irreducible component of X
is surjectively mapped to Y. In general, it implies that all the fibres .‘{F.
y £ Y, have the same dimension and that every irreducible component of X

I8 aurjoctively mapped la a connccted component of Y .

In thiz Laszic getup, we do not lose too much by taking "algebraic



varigties, say, owver an algebraically clogsed field" instead of “'schemen''.
However, we need to congider docme other "derived" sgtups, suech 3g trunca-

tions and completiona of the given family, in which “achemes with pilpotent

glements in the structure sheaves' and "formal schemes" are involved.
Suppose o family {of {solated singularitiea ), {®,X.Y, £ ), is given ac

above. Let I be the ideal aheaf of the subscheme g!Y] in EK’ Wo write

+1

then }Ew} for the subschame of X delined by the ideal sheaf I . where

¥ im any non - negative integer. xm = ¢(¥Y) and all the I{p}, ¥ 23, hava
the same nnderlying topological space. The structure sheaf of HWI ta

G .I"f!H {reciricted to its support). We have a canonical immersion

Xy —> Xpgy for >, and we call the limit spaca X = Lim Xy, the 1-

adic completion of X. The structure sheaf of this "formal scheme" ¥ s

Lim O .I"II"'I-I-1 + The morphigrzn F: X =3 Y [reap. £: Y —» X} induces mor-
5 -2

. . -, . .
phinma 'I'I'[y], E{y] - ¥ and - ¥ = ¥ [resp. E{p}. Y — xﬂ‘"l and

-

EU-"]': ¥ = X). The "derived" (amily !Tf[p], r x{b’l" Y.tny) {resp.

i 7, ]TE. ¥, i }} will be called the ¥ -th truncation { resp. the completion ) of

the given (7, X,Y,2}.

In what {ollows, the main theme is ta compare a family {0,%, Y.<)
with ancther (W', X', Y, s'} {likewise, their truncations, or their comple-
tions }, where the parameter space Y  is the same for all. Dy abuse of
tanguage, [ shall eay, for instance, that

Py * {ﬂ{p]. Xepjr ¥s 5{’-"‘.'!] (e X T SL

i a morphism {or an laomorphism b within a neighborhood of a paint y € Y,

whet Py 8 meant to be a morphism { or an izoraorphism} from



-1 -1 . . ) .
"{HI (i) to ﬂ‘{y} f0) such that Tl'“lrIIL w{vl""{vi* where [ is a certain

neiphborhood of the point ¥ in Y.,

Theorern 1. Let [(nm,X,¥,£] be s farmily of {solated singular poinle

{in the zense deperibed above). Let y Le g point of ¥, Then there exists

a pair of integers ft,r), t 21 and r 20, which has the follawing properties

[I} Let ¥ bo an integer not leas than b, and {7, X', ¥ ot} any family of

isolated singular points. Suppoee dim {Xy) = dim (X' ] and there Jz piven

an igomorphism 'u:'“_..:l: ”If":" H'{p}, Y, .g'w-'] —3_- {11“,] . :':.[1.-] LY. Ew}} within

a ntighborhood af y. Then the isemorphiam

Pluar)? h'{u_r]’xl{u-ﬂ' Y. EETf‘-t’}} =, (T pyr Rperys Vo Eppypy )y induced by

. . - ) e -, o= ~ -, . i
"":'tl.-']' gutends to an isemorphism @ {7V, X', ¥, '] —» ﬂTI",i,Y,E} within 2

neipghborhood of y.

(II}) ¥ hb; ¥ = Y igany morphisr of noetherian achemes and ¥ im

dr

any point of ¥ such that B{y} =y, then the pair of integers {t.r] has the

same property as {I) for the family (%.%,¥,E) obtadned from {(7,%, ¥, &}

]

by the base extension k, and for the paint 'y ol Y, where ¥ =X 1-:??,

In particular, I shall conzider the case in which X is an zlgabraic k-
scheme, with & field Kk, and Y §e a geometric point of X with valoe in k
{or, a k- rational point), In this case, the theorem zaserts, roughly speaking,
that the analytic structure of the isclated singular point ¥ of X ig determine:

by dim X and by the stroecture of Lthe truncated local algebra E'f f_n_'lu_?i '

a—

where (o = the local ring of X ac ¥ and M. the maximal tdeal of

Oy -



Definition 1.  For a family of isolated ainguiar pointe (7, X, Y, ) aopd

& poine vy of ¥, Icall it,r} apar of TR -indices of (¥, X, Y, £] atthe

point  y, il it bas the propertice [1) and (II} stated in Theorem 1., In parti-

cular, when an alEnhraiﬂ k- achermne X is Eiw.rn with an isolated 5inEular

point ¥y {with value in k}, [(t,r) will be called a pair of TR -indices of

(X.¥) {or that of the izolated singular point v of X).

Rote that if (£, 7] is & pair of TR -indieea of {7, 2X,¥,e) then spis
cvery pair of integers (f,r) suchthat € £t and T2 r. It can be proved
that the intéger r can be zero only if £{y) is a simple point of 1‘:? '

The thecrern has an obvious "complex - analytie” analogue, in which X

and Y are complex - analytic spaces with holomorphic maps & and £. In
the ¢complex - analytlc case, one can [ind o proef of the theorem |for an
igolated singular point ¥ = y ) in HIRONAKA - RO38I, [3], which is based on
desingularization technigues |HIROMAKA, [2]; especially, Corallary 1, p.
153, & ¥, Chap. 0) and inflnitesimal caleulus <Jue ta Grothendieck - Grauertr,

In this vase, Grauart's normal projection method ([1]., Satz & p. 35%) gives

4 stronger ¢onclupion in which the éxtended faomorphiam @ of the theorem

15 holomorphic {or, to be precise, @ ig the formalization of a biholomorphic

map fr'em a4 noighborhood af £f{y)] in X' to 3 neighborhood of s{y] in X))
M was then pointed out by M. Artin that the nermal projection method provides

an Etale equivalence | which implies a holomorphic ene in the cumplex case}

instoaad of the forrmal cguivalcnce &l Cmn the other hand, I found a now proof

of the theorem {which worke in the above - stated generality: for instance, in

any characteristic case] and by these means, 1 obtained 2 theorem of the



following type.

Thearern 2. Let (7,X,Y,c) and (0. X', Y. £') be Iamilies of

isolated singular points, amd y o point of Y. Suppose there is glven an

iEamorphism, &': {f‘r',f{‘, Y,E'] E-} {!?, :;:,', Y, 8] within a naiEhburhﬂ-ﬂd of

¥ in Y. Let ¥ bo any positive integer. Then, within a neighborhood o

y. there exist etale morphisms X: (¥, X, ¥, T} — {7, X,Y,£} and

At (A, x',Y, E'} — (7K, Y, £'), which induce isomorphiame of comple-

_— i

tions, and there exists an isgmorphism o {71"' . E’, ‘f*?'} E} 7T, X, Y, FE]

which induces the same inomorphism P {“Eu}’ KEHJ LY Ei-u.}} Eir

{ﬂ‘y}.?{{m, Y. E'.'-"'}} aE the given vﬁ does,

In thia theorem, €tale marphisms aré meant to be those of [nite type.
In oy proof, this thecrem and the preceding one are proven gimulizneously,
It should be intcresting to find a direct proof of the second thearem and to lock
into the guestion of whether it is esszential or aot to assume the smocothness o
X Y foy all peldate of X - 2% ). |MNote that this stnoothness assump-
ticn ig ecaential ia the first theorem, }

Let us now go back to investigate further the notion of TR - indices of a
family of isulated singular points,

Theorermn 3. Let (7, X,Y,e} he a farmdly of isolated singluar pointe

and v apoint ¢f Y. Let ft,r) be a pair of TR~-indicesof (7,X, 7, z]

at y. Thenthero exists a neighborhood U of y in ¥ such that for every

sint z of O, f{t,r) is s ppir of TR - indices for the isolated gingular

painta {X,.e(z}), wheye K3=TF']IEL

The converee of the theorem is [ar from being truc. MNamely, let us



introduce the notion of TR - indices of all "near-by" fibres of a family

{r,X,Y.2) atapeint v of ¥. Thic is any pair of integers IE, T,

t2 1l apd T E 0, puch that there exists a neighborhood T of y in Y
such that (t.7) ie a pair of TR - indices of the fikres (X_.s(2}} for all
z £ 0., Then the claim is that {t,r) is not in ganaral z pair of TR - indices
of fr,X,¥Y.e) at vy.

The dilferénce batween the above two notigns of TR - indiges for a family,
namely (t,r} and IT,TF), can be seen in the following two theorems, Lhe
firat of "gifirmative nature” and the second of "negalive pnatare'.

Let ug atart with a fixed isolated singular point of an algebraic k- scheme
(Hg.xp). Let us then consider various familice of isolated singular polnts
(wm, L. Y,£} with center {}Eﬂ,xﬂ]; that is to say, there is a specified point
LEN of Y and an ipomorphism $n= []‘?{0. :rr.ﬂ] i} Iiyn“:_- {yrﬂ]], whe re iﬂl
{reap. ffu',i dénotes the completion of Rﬂ [ reap. ]{fﬂ} Ey the powars of the
maximal ideal at Xp [re¢sp. the samec at g Yo 13.

Theoram 4, Qiven an izclated singular point i Xg.%xy), there exists a

pair of intcgers {t, T} euchthatif (¥, X,Y,E)] iw any family of inglated

siogular pointg with center {iﬂ . xﬂ] —1‘- {i’yﬂ. £ Yo 1), then there exists a

neighborhood T oi y, in Y and {t.T} is a pair of TR - indices for all

fibree [(Xy,ciy)} with y € OU.

Theoratn 5. Suppéac {:-:D,, xu] ig an igolated slagular point of & com-

plete intersection xﬂ' ie,, there exists a local imbedding of X5 in an affinc

N - space so that the local ideal of X, at x, 1s generated by [N - dim Xj)

clements, Supposc Xy is not a simple point of Xp- Then, for evely pair of




itepers (b, r), there exicts 2 family of isolaled singular points [T, X, Y, 2 |

A A
with center [Hﬂ,x:}]i}[xgﬂ.gnun, such that (t,r) is not a pair of TR -

indices of (7, X, Y, €} at yg.

Let us reamark that if [(r, X, ¥, £ iz o family of izclated gingular points
and Xy is a cowmplete intervsection al £y} for some v £ Y, then thore
exists a neighborhood T ol ¥ in Y =50 that all the {ibres Xy 3% a comr
plete imersection a1 f{z} for all 2z & U. Infact, X itself ls a complete
intcrsaction locally at £iy) io Spee {Alt), ..., tN]] with independent
variablce tJ. {15 = ), wheye ¥y EEE LF'-.]-IE Y.

In dazling with cornplele intersoctiong, there is anpther point that makes
"'deformation theory" zimpler than the general case, Namely, let 7: X - ¥
be any flat morphlem of finite type, say with a regular noetharian scheme ¥,
and E: ¥ — X 3 a seclion, i.e., a morphism such that ®ef = idantity,
Suppose that for every point y € Y, the fibre Xy is reduced and equidimen-
gional and E{y] is an isclated singular point of Xy, Notice that such

{(7.X,¥,£) isa"lamily'™ of izclated aingular points (in the pense of this

paper ) under only one additional candition that ¥ - r{¥] is emoocth aver ¥.
This condition means that Xy - c{y] is non- sinpular for all vy € ¥. Now
the poiat is that if afl the fibraa Ny are complete intersections then we can
always medify (7, X,Y,¢) intc ancther [T, X, Y,r}, aatisiying the addj-
tional condition, in such a way that there exists an isomorphiam

{Fiu]*i—{p}* 'l",f{p-l} = {'EI'{,_,}. :."'.'{ﬂ}. Y. EI[I-"]I where (M, K] for pome @ is

a pair of TR - indices fop all the isolated singular points [(Xy,£(v¥, v E T,

Let us furthermore remark that the existence of [t,T7) in Theorem 4



suggests that;

The totality of all near-by isolated singularities of a given one is ''of

finite type'” in sone algebro- geomelric sense,

The meating of such a statement can be made very precige in the caze ol

complete intersections, Namely, let me introeduce the notion of "'quasi - equi-

valent" familieg, This is as follows. Let (v, X, ¥,c£] and (W, X', Y, ")

ber two farailies of isolated singular points, having the same parzmeter space
Y. Then I say that they are quasi- eguivalent, il there exists an isomorphism
ﬂll‘
et
a pair of TR -indices for all the fbres (Xy,ciy)} and {(X'y.c'(y)). ¥E Y.

L A ’l—'ﬁ}{ﬂ LY ). where (W0) for some p s

{v a1 * i (v

Now, I claim that Theorsem 4 implies, for igstance, that, if (Xp. xu] iz a
complete intersecticn, then there existe a family of isolated singular pointe
(¥ X, ¥* 09) with center (Kg,xp) — [i*yn,r*[yﬂn which ifduces
every other family of isolated singular points with the same center, "up to

guasi - eguivalencas' within seme neighborhoods of the ceater.

Theorem 5, on the other hand, implies that there exists no family of
isolated sinpular points with center [iDJ xD] which induces every cther family

of igatated singular points with the same ccnter, "up b0 formal eguivalence s

{or, up te igemerphieme of completions } within suitable neighborhoodes of the
center,

These facte attract me towarde the question of finding "reasonable and

{or] significant restrictions to be imposed on families invelved, which gnable

ud b6 congtrucl "a local universal [amily up to formal equivalences™. For

instance, the guestion leads me to the notion of "equi - singularity'. A theory




of equi - singularity has been dug up by Zariaki and is gradually showing up its
clzar face in sorne special cases. Put it seerme that a Full and complete theory
is at present uiterly out of sight,

Zariskils theory of equi - singularity is strictly concerned with "hyper-
surfaces", Hera I like to propose a netion of equi « singularity which applics
even to aon - hypereurface caces, although the characterigtic of the bage field
1z required to he zero am in Zariski's case.

Diefinliion 2. Let X Be am alsebraiﬂ scherme over a field ® of

characterictic zaro. Assume that X iz reduced and equi- dimensgicnal.

Let Y be a non-gingular irreducible subscheme of X. Let y be a point

of Y. Theglsay that X is equi-singular along Y at the podat ¥y, if

IreElacinE ¥, and Y accordiaply, by a neighborhood of vy} there exists

a morphism ®: X-+ Y which has the (cllowing properties:

i) (M. X.Y,.r) isa family of izolated ﬂinEula.r points (in the aenge

dedcribed at the very beginning ), where £: Y ~* X denotes the canonical

immersion, and

i) Llet lh be the sheaf of Jacokian ideals of (7, X, Y.l {cee below)

and +f the sheaf of ideals definiap Y on X. Take the sheal of product

ideals, } = F&j. on A and the compeosition H: ;E_-—} X of the biratianzl

blowing - up of X by the ideals J- and the normalization of tha blown - up

echeme, Let ; EFEE' the ideal sheal on X generated by F«. Then

ria

EE{“I;I iz flat over E?. or, the subscherne Y of :Tf dafined by :I;u ig Dat

- - iy
gver ¥ with référznce to the morphism fa h.

The sheal of Jacebian ideale of (@, X, ¥, ¢} iz defined as follows:




Lo

For cach point vy € Y, by replacing X by a suitable peighborhood of £(y)
{and accordingly Y). I asseme that there exists an imbedding

pr X —» Spec (A[T;. Tp.....Tyl). where Y = Spec (A} and T;

(12355 N) are independenat variables, such that @ = (projection)ep and

the idezl of [p=E)J{Y] is generzted by 'Tl, TE p ey TH' Then the sheaf

of Jacwbian ideals ;lﬂ on X ia generated by (N - dim Xy ) % (N - dim Xy -
mincrs of the Jacohkipn mateix O {il . fm] fa{ Tivarse TN}. whers
(fy..-.. fm: it a base of the ideal of p{X} in A[T]. jtisz important

that thc sheaf h‘ it independent of the choice of irmbedding p.

Remark. If the condition i) of Defipition 2 is satiefied, then the
condition ii) is equivaleat to the following:

ii¥ ) }"Hf}"u-l-l is flat over E? for 21l integers ¥ 1,

Moreover, if {h_m Y =1, then it iz equivalent to:

ii**} Every irreducible component of reh [E1Y}) im mappsed onto a
connected component of Y by Tah.

The following theorer supgests the poesibility that the totakity of all
emall families of isolated singuiar pointe with 2 given center can be derived
from a certain universal family so long as they are subjcct 1o some wgui -
singuiarity condition.

Theorem b6, Let [}{n, xu] be an izvlated mingular point, Then there

exixty 3 pair of il'.I.IEEBI'E ft,r)} such that for every family of izulated Bingular
points (7.X,Y,¢) with center X5, x )= (R, ftyg)), (e 1) s o pair

of TH -indices of (7, X, 7V, e} at Yo provided {r,X,¥,£) satisiice the

condltion ii) of Definition 2,
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It seetns to ma that Theorerm & remalne trua if one replaces the
conditisn ii) of Definition 2 by gome reasonably weaker condition,

The condition i) of Defindtion 2 has some geematric and tapelogical
sigrificances. From now on, this coadition will be referred to as
‘epnditien{ES)"'. T take now the cawe in which the base field k ig the com-
plex oumber ficld €. In the place of “schemes", [ shall take "cemplex -
analytic varieties™. Notice that the "conditicn {(ES)" has an obvious analogue
in the complex - analytic case. Let (Mg, x;] be an isslated sipgular pount,
wherc }Cﬂ ig now a cormplex - analytic variety {reduced and egui - dimensional
Suppose we have a local imbedding Pg* EU —= ¢V, &N = the campilex mamber
space of dimension N. For simplicity, assume that pyixy) = 0, the origin,
Let T _{X,) be the compiex tangent space of X, at x € Xy ¥ xp. which
is realized 3na linear subspace of &N ia a natural manner. M
u = [ul.ua...“uﬂl and w <t {vl.vz,...,vﬂl are two vectors in EN,

3 N —
then u-*v denctes the inner praduct zi:] w*v; . For apoint x € X

—
let 0Ox denocte the voclof in .;1:” which cods at = [and, as always, elzris

from the arigin). Coneider the following real - valued function af

X'Exﬂ‘ 'E:‘Eﬂ],

v - i | }

Tip.:.x1= max p—y
0 v €T, {Xg) { || lox]
veb

yrhe re ivk = the length of w = -.I.II ZT'.I] !\ri:lz' . Then, Whitney proveds
1=
Thoorem 7.,
lirmn T{pn;x]=l.
x= 0
By this theorem, if we set T (paixg) = 1, than T tpu:x} beetrnea a
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continueus function on In . Suppose therc ie given a family of isolated
gingular peinteg {¥,X,¥Y,.£). Then, at least Iogaily, one can find an
imbedding of the form p: X— Y X ¢ such that T = (projection)+»p and

Let me say that sech an imbedding p is permiseible.
(pepd (Y)Y %0 - Fick one permissible imbedding p. Then, {or eath

point y € Y, p induces an imhedding Py * Ky —» ﬁ:N {=v X ENL For this
inguced imbedding p}r* I have a continucus real - vgivned functicn T {p}r X1,
¥ ¢ Xy. Letus define a raal - valued iunction ean X as followas:

Tipix] =f{p},::~r.ll i & Xy, y& Y.

1 shall call such a functica Tip:x)] a W-{function for the family of isolated

aingular points (o, X, ¥, e). This function depeads upon the choice of

imbedding p. I shall say that the W - fuaction T{p.x} is associated with

the imbedding p. One can prove that, given a family of isclated gingular

points (@, X, ¥,e]), if a W - [unction asacciated with a permissible imbedding

is continuous on X, then the same holds [or every permissible irnbedding.

In view of this fact, we cao spcak of the continuity of W - function for a given

(7. X, Y,¢) without agking if X admits a global imbedding X ==Y x g
for some N, because X admits a permissiblc imbedding at least locally
at every point of £{Y ).

In view ol the theorem of Whitoey {or, soemc other rcasons }, given an
isolated singulas point (X,. %y} with an imbedding pg: Xg— €7 with
Pﬁ{nn:l = 0, one ¢an find a real oumbar p >0 suchthatif 0< & < p, then
Xq is transversal to the sphere in £ with center 0 and with radive £;
this sphere 5; has real dimension 2N- 1, Such a real number # will be

called a permissible radius af iXgi%pt with p,. Hence W, =XgN35. is
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a manifold of dimeagion 2n -1, where n = dim KIEI . I we identify 5.5 writh
a ptandard [ZN=-1i)-sphere 5, then the imbedding W, =* 5 jg a differen-
tiable isctopy in terms of the parameter & [0 <:Z p). Let us sirmply write
W ifor Wy, and the isotopy class {W, 5} ia the “topology!! of the singular
point {X,, %4} with imbedding Pg+ Afamily (7.X,Y,€) with a permiss-

ible imbedding p: X =¥ x ¥ will be #aid to be topelogically stable £ {or

every peint ¥ of Y, there exisis a neighborhood U of ¥ in Y and a
positive rezl nuraber @ such that p is a permissible radios of [ Xy, &£(y1)
with the induced imbedding p, : Xy —» e for a1 y € @,

I can prova:;

Theorem 8, Civen a family of izolated singular points (7, X, Y, o}

with a non - Ei'l'IEIJJ.H.J.' irredycible Y and with a permisgible imhedding

p: X-> v x el

(1] the condition{ES) = the sontinuity of W - function = the topolo-

pical atability;

(M} # dim Xy =i for y €Y, then the continuity of W- function =%

the order of siogularity B{Xy, =iy} dsconstant for vy € 7. (&8{Xy, s{y)=

raa

dimn . O/0, where O = the local ring of Xy at £(y) ard O =the integral

closure of O in the total ring of fractions of &, both being wiewed aa vector

spaces aver C,):

{nI) M dimXy~=1 for y£EY and M=2 {ie,, the case of plane

curves ), there is a completa equivalence of various ¢onditions, namaly, the

condition {E5) =% tha continnity of W - function = the tupniugica}. grability

= the condition [ES).
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EQUIEINGUELARITY AND RELATED QUESTIONS OF

CLASSIFICATION OF SINGULARITIES,

by

Q. Zarield

#1. The slueive idea of equivaleat singularities,

Ideally, a complete thesry of equivalence of singularitie s must

give a precise meaning to a statament such aa this: 'the ringularity

which a given variety V bas at a given polot P in 'the samae'’ as the

singularity which another glven variety V' has ata given polnt Pr,

In gdditien, the thecry must include a number of criteria of eyuivelencs,

whether algabralc or algebra-geometric i nature; or kepological, if
we are dealing with the cotnplax domain. Matgrally, one will Lmpose
gome restrictions on the ground fisld I, say k will be gasumed to be
aigebraically closed and aven--to begin with-- of characteristic zerc.

It goma without saying that the equivalence ralation f.t-riﬂcli-wa 3;; -l_n.ul-.:h
1;13 for is one which ta much weakar than atrlet znalytical equivalence
{i.e., leomorphism of the completions of tha local tings of F gnd P},
Each clase of equivalent algebroid elngularities will give rise to a

variety of biholomorphie moeduli  [the quetient space of that clase,

moduls analytic equivalence). Opae shonld pot empect, howewer, that the
variaty of moduli in this context will be irreducible, or aven eguidimansional,

Examples to the contrary can already be given lo the cage of efngularidms



of algebrold plana curves,
Similarly, if we are ln the complex dormaipn, we enyvisage an
equivalance raleton which is mueh atroogar than topriogical agul-
valence of the bwo varletles ¥V and V', locally at P and P’ respecHvely,
Thus, if ¥ 1s an algebroid plane curve, the only topologleal lavariant
of ¥ 1a the number of irreduclble analytical branchegwhich ¥V has at

tha point F, However, if we deal only with narmal psints, then ¢ne can

txpact that in this case the relatfonship betwesn topological equivalance

and algabro-geomatric equivzlence will be murh loas casual than in the gener:

cage, The only non=trivial reault which we have in this connection 1s

Mumicrd's theorem that if an algebrale surface ia topologicglly a

manifold at a normal point then that point is a eimple point of the surface,
Still with reference to the complex domain, the set=up in regard

to the connactHon bebween tepological equivalence and the (hypothatical)

algebro-gaometric equivaience, changea radically 1f our warleties ¥ and

V' are ambedded variotes, 1{,e., are varietes of dimension r, embedded

{(locally at P and P respectivaly} in affine {r+ 1l-apaces &, A',
and if we lock at the complementary spaces & - ¥, A' = V', Theo oos

may conjecture that P and P are equivalent slngularitdas i and only

if the gpaces A - V and A' - ¥V'  ars homeomorphic {locally at P and

P' . Thin ig only known to ba frue i the cass r = 2,
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B2, The case of plane algebroid curves,

Thin clamsical cane, in which everythlag concerning agquivalencs is
wall-kncwn, la nevertheless a very important case, becaucas it containe
the germ of all poasible genarallzations, One muat, however, bave
a second look at thie cleagical case, using a2 somewhat more sophiaticatad
approach than the one uasd by Noether aod Eoriquas in their study of the
composition of aingularitiea, Above all, one must davise in this caee a
dafinition of equivalence which dows oot presuppose a detpiied analysis of
the singularity, {or in the higher dimenslonal caee such an analysia is
a hopeless undertaling, Let me glve you thrae such definitions and BAY
that it can be proved that thay are all aquivalent (the proofs are nat
completely teivial] We assume throughout that the ground field k is
algebraically closed { of arbitrary characteristic) ,

If C ie an algebroid plana curve, with origin P we dapote by mP{GI
the multiplicity of the paint B, If PyePosecesp, ate the diatinet tangants
of & at P (¢ % mplCl, then we dencte by €, (¥ = 12,0, 40t) the

unlen of all irreducible branches of € which are tangent to P, + #nd we

eall Cl. Cz,.”,ct the tangentlal components of G,

Leat D ba ancther rlane algebroid curve, with some origin 3. Wa

ageumea that C and P have the same oumbar h of irreducibie branchen,
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arid we dencta by !] ‘ -Ez.-. P ﬁh the irreducible branches of D,

DEFINITION . A (1,1} mapplog m of the set of branches

:r'la?z-u.;'rh of C onto the Azt of branchas ﬁl'ﬁi"“'ﬁh of D

in gaid to be 3 tanpentially atable paiving m: © -5 D' batween

the branchea of C and thoae of D, if the following condition is sztiefied:

given any two bracches ¥y and 7§ of € , the correaponding branches

mly,) and fhrj.'r of [ have the sama tangant if and only if ¥, aod ¥;

have the same tangant,

-"---.

Agswre that the xiats a taggentially -ubla pf/rin L F ! & == D
' S

R

- -~
betwaan _i'_h{’{ram:hn of C andwﬂ{fin cf I, Then

"'\-\.

is clazf

that C and D \ha\w the same nuﬁlher *wutm:t tangent dine

F inducesa (1,1} m ng aI the aet {l:r],[:n-1 x.\.\., Pt} nf tangent line

C =nto the sat {ql. qz,.. ' .«Q{ﬂf tangent Hn-rh of EL.|= We chooae cur -

indﬂ‘ﬂiug af fheaa tangent lines in 11(1£h a way that P, and " Gy, 210 pa'i/nd
=

Al

..
in this Induce;:'l ping, azd we danut-exfh {ree D the tangential
W{F ¥ f\\ P+ ) ﬂ.{

s I\\.
component of G {resg, I,'.'j asecclated M\E‘Q {resp,, qu]' Than}h

) T
ig clear that for &E‘ch LiZeeaaty 0, ¢ ll.‘:;‘*«x—l- D, of the set .

uf hraﬁ%h\uu‘ﬁf Cu onts the sst ¢f branches of Dp {the pairing LI inm
o ™,
trivialily tanfdnyalljr abable, uiq.&i'fbﬂt ':u and D;..- bawve anly
N _

tangent Hne}, S



Aapumne that thoare exiate a tangentlally stable palriog # @ C —= D
betwwer the branchea of C apd the branchea of I3, Ther it s clearx
that & and D have the same number t of digtinct tangent Ilnas and
that T lnduces a (l,1) rrapping of the sat {PI'FE“ ..,pt} of tangent
Hnes of C onto the sat {ql'qz”'”qt} of tangeat lineg of D, We
chocse our indexing of thede tangent lines in such a way that p, aod
q, ars paired in this induced mapping, and we dencte by ':1,. [raap. Dy]l
the tangential component of C [reap,, D} assoclated with Py (TesEg )
Then it lg clear that for sach v = 1,2,,,,, b, ¥ induceaa [},1}
mapping T, {:p — D:.-' of the set of branches of Gp onto the awt of
branches of D, {tha pairing 7, Lo trivially tangentlally atable, since both
<, and D., have only one tangent line},

Let # and T, be as above (F -tangentially stable}, iet T bea
locally quadratls taanmformation with conter at the origin of P of C and
let 5 bw a locaily quadratic transfarmation with center at the origin o
of D. Let C' = T{C} G = T(C,], D' = $(D), D, = SID_) be
the proger transiorma, Mis clear that T, induces a {1,1]) mapping
w', of the aet of branches of C, tmts the set of branches of D!,
Namaly, if we agsaume that the branches of € and ' bave heen ao

indexad that ﬂh-i] = & for 1 = 1.2,.,,,h, then we sot

i ]

1 — 1 L | - t
T\“”h“i.'r = &, where yi = Ty} and &'= 8l6.) . The palring
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TFL 4 cl, —> DL between the bhranches of EL and the branches of
DL i3, however, not necessarily tangentially stable,

An algebreld corve € s zegular U its origin F s a eimple
poelot of C |, i,e,, Lf mpl[{'-] = 1, Iif P is » singular point
ff.e., i mp{Gl > 1), then we can resclva the dingularity of C at P

by a finite numbar of locally quadratic transformations, Dy a seguence of

auccessive guadratic transforme of € we mean s gequancte

f c, o R E[ﬂ ---._]' of algebrold curves lf.'.'-l::l'l‘i auch that

1
+ $8 & connected component of the proper trangfcrm

for sach i, C-{Ei
of Em under a locally quadratic transformationm whose center s
the origin of Cmtﬂ{m = C}, The fact that the singuisrity of T canm
bo resolved can then he atated as followsy : thare cxiata an integer N
much that in any sequence of ayccessive guadratic transforme of C s
the curves Em arearegalar if £ £ N, We denota by & {C) the
smalitst integar N with the ab ve property {0(C) = 0 if and oaly if
C 1iteelf {n 5 ragular curve) ,

It is claar that IF SHP l:'zr raneS)  are the connected components
cf the proper quadratic tranaform TIC) of C, and if o (G} > © » then

Fl,) < o{C} for v a 1y Zreuss & Qur fizat definitlon of equivalenca

of algebrotd carves proceeds by inducticn on o (G},

LY

Let # { C —= D be a pairlng between the bracches of © and

the branchea of D (it s already aspumed that G and [ hawve the gatne



rutcber h #f branchea), I T 1a reguiar (whance T{C] = 0), then

C {acd therefors aleo D)  baa only epe branch, ¥ : & =-—» D s
unigquely determinad, and we gay that T {s an [a)-zquivailance if algn
D 18 a tegular curve, Asswmne that for all pairs of algebrold curves

I'. & with the same number of branches and such that a{I'} = oG}

it bae already been defined what 1s to be meant by aaying that a palring
I —= & between the branches of T and the braochea of & im an
fal-equlvalence , Then we deflne an (a)-equivalence betwesn C and D

as followe (we use the notations iniroduced eaclier in thia epation} !

DEFINITION 1., An (a}-squivalence #: © —> D laa pairing

T between the branches of ¢ and tha brancheaa of [ having the follewiog

properting;

) 7 i tangentially stable,
b O b s omiyd {di o= 1,2,..,,0), then mply) = moi&}.

31 Ths Eﬂ.irj-n! ﬂl-'l' H ':;" — DL: ¥ o= I-; zlllll tj in An

{a}-equivalence,

We now proceed to ogr gecond definltlon of equivalence between
algebraold singularitiea. ¥ T is cur quadratic translermaton, with
cetiler F then T blows up P inta the line x' = 0  of the 'y y')-
plane, We demote this line by L' and we rafer o £' a8 the excaptional

curve of T, If C, is & tangential component of C and T, = TC,)



is the proper T-transiorm of C,. then (' contalne thi origin PL
wf GL « bat E' la Aot a component of Gl'_, . We denote by G‘J the
algebroid curve C, U £' and we cali C,* thetotal T-traos-
form of C_ ; in symbnls: Cl* = T{CHB . Woget C'v a TIOIF £

and we call C™ the totali T-traneform of ©, Note that mp, [GL‘!I in

» e

alwaya = 2,
It la known that after a flnite number of successive muadratic

tranaformations noe can reach a stags where the total transisem of O

bas snly srdinary doable points, Mnare precisely: there exists an integer
|

M Zg {depending on C) with the {slowing proparty: i (C, C'w, C'e . C

ia gy semucnce of algebrotd curves auch that for any 1| we have

clittl, _ il +2) gd+l clirl)

1 le 3 crnpectad component of

, where
the prmper quadratic transform Tm{{:[i]j af EM{T["-iI belng a nuadratic
tranainrmation with center at the srigin Pm nf Cm ] mod E-ﬁ +1} 1e
the exceptismal curva aof T“':I y then fnr & 2 M the arigin pill ni Cm*
in an ardinary dauble paint nf Cm*. We denata by o %(C} the smallest
integer N having the above praperty,

It s clanr that o*(C} = O if and anly U the erigin P of ©C s an
ordinary daghle polot of &, IF < 13 a regular carve then a strict
interpretation «f rur definftion ni o®C) wauld require to sat o®{Z) = 1 ,

However, we agros te pet G%C) = & alas if C isa regular curve (this

cruld alse have beem achievad by a slight change tn #ur gensral defimition
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of | g¥C)) . 1tieeanily gaen that o*(C).= 1 fandonlyif F s an
ordinary a-fold pointof C and s > 2,

Let € and D have the same numbar of branches and let
7: C —» D beapairing of the branches of G with the branchses of
B. If p¥C} = 0, {,e., if P is alther a ajmple point or an ordinary

doubie point of C , than we ghall say that 7 ls a (blregulvalaoce betwean

C and D if and only if aleo g#®DY = 0 ¢ Lue., if and only if the origin
O of D ia a eimple point or an erdinary double polnt of B according as
F is a simple point or an ordlaary double point of © . Assume that far
all pales T, f»  of algebrodd curves, with the same number of
branches, such that o™} < o®C), {F han alrepdy baen defined what
is maant by saying that a pairing T' —+ /%  batween the branches of

I' and the branches af /% isa (bl-aguivglence, Then we define a

(blsmguivalence butwaen C and D as followa:

DEFINITION & A (b)-aguivalence w: C =—» D fsa pairing

7 between the branches of © and the hranchee of D, having the following

Propefrtisa:

1} = is tangentisily atable,

2! Thme palrings "il.-' H C‘-L — DL{:-' = 1,2, eusst] are

(hl=tguivalencan,

31 g' 2nd E' are the sxceptional curvas of the quadratic

transformatione T and § respectively (having centers at P
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™ . ta | e = It T

_ we extend the palring TrTP'fP t> a pairiog 1.-:;* : 'CF; — DL‘* by

setting r;“ { £t} = E', then F,* lea (b)-equivalence .

MNate that copditione 1) and 2) of this deficition are ideantical with the
condions 1) and 3) of Definftion 1 ; conditlon 2} of Definition I haa
bzen deletad and has been replaced In Delindtion 2 by condidan 3), Thua
the aguality of the muitplicides of corresponding brancheq undar w iy
not explicitly puatulated In Definition 2.

We now give a third definition of aquivalence of algebrold Mngularites,

which we shall refer to aw formal equlvalence, Again we procead by

induction on g *{C) , whera we agraa that if o#{C) = 0 formal

equivaltnce coldcides with (b)-egquivalenca,

DEFINITION 3, Given two algebrold curves C, D ,having the same

numbesr of branched, we eay that € and D are formally egquivalent

Af there exdata a tangentially athble pairing 7; C —% D hatwesn the

branches of { and the branches of I such that {in our previoue

nptations) :

1] CL and DL are formally equivatent (v = 1,2,,..,t)

2) CL"‘ and E';;' ara fotmally egquivalent [ v = b 2i.0020t) o

Mote that thie definition does not may anything about the mature of the

pairinga #L : CL — DL and “;,.-* : CL" — DL"‘ induced by .
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Conditlon 11 merely requireg that theare exiat, for sach v = 1,2,...,¢,
some tangentally stable pairing p, i G, —* D; satialylng the
conditione of the above inductive definition; and simiiarly, condition 2}
ragquires that there exist a tangantally stable pairing

px CL* —> DiF satigfying almllar conditiona, It im nok evan
reguired that p;‘ ta an extanalon of p L For this reason,

Definition 3 14 the moat subtle {and aleo tha wezkeat} of gur three

Anfinitionas of egquivalence, Tha fact that these three definitlons are ali

*quivalant to #ach other is tharefore not devold of latsraat,

BEMArRK L, In the cass of characteristlc p 7 0 the following
example poeed the quenstion of whether one should not attempt to look
for a finer dafipition of agulvalsnce in that cyae:

Crf = ¢ 4 xzp-” + a&:zp-ly =0, a f 0;

D:g = 4 2P0 _ 4
Itis easlly seen that © = D §n the senasa of the pracedipg definitiona,
Bowever, the module of derivations of the local rlog of D 13 free
{pince —iﬁ* = ], while the correeponding module for £ i3 not
free, la such a gualitative diffarence batwaen the two local rings compatible

with. » reasonabie definition of equivalance ¥



1z,

REMARK 2. li ig possible tao gensralize the definitions 1| and 2
tc the case of a pair of arbitrary local rings of dlimenston 1 , despits
the fact that the nurmnarical character aimilar to o(C) 1o not always
avallzble in the abetract czae and that therafore the definiton cannot be
by indueten , {It 13 known that it may not e pogsible to resalve a non-

regular iocal ring of dimeosion 1 by successive quadrate transformations)

83, Analytic familias of algabraid cukves; &quisingularity in

codimenslon 1,

Instead of attamptng to setablish an equlvalance relation betwean
two given singularities, one may try a legs static and maore Iruitiul

approacl, ln whick one sonaldars an analytie family of aingularities;

¥ i {shilth = o,

whare [ iz a power geries in the coordingtes {x} s {:-:l..'-:z”.” :H:B“}
and the paramstara ft} = {tl’ tz. aa 'tp} » and where we aspume that
£t {0} ; feh) io identically zers, Wa have here a o -dmensionhl family

of s-dimensional algebroid varieties W embedded in an affine

t ]
{s + 1}-apace and having a slogular point ot the origln {x} = 0, &5 ons
conaiders the specialization {t} — {l:l} . one may poge the follovdng

problem:

Establiah criteria which will glve a meaning > the stptement that the
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apecfalized varisty “'ﬂ has the same alogulagity at the origin ag

deen the gonaral member Wt of the famifly,

¥We can intarpret aguation (1} as definlng an {a + g} -dimensional
embeddad  variety V¥V , in the affine space of tha =+ p + 1 wariablea
® and t. Thia variety ¥ carriss the {rreducible subvariety M :{x} = q,
af dimension g land codlinension g), If wa dencte by Pt the general

point {{0},{t}} of M and by P ths apercial point [{ﬂ},{ﬂ}] of M, then

Q

W, laa secton of ¥ through P, » transvereal te M, and W, ina

saction of ¥ through F alao tranevergal to M, Furthkermocre PD

¥} ]
is a single polnt of M, COne weuld not be far off the right track were

ona to #ay that the singulazity of ¥ at the general point Ft of M ia

the game aa the alngularity of ¥ at the special point PD of M if and
only A the transveraal sections wt and ‘r'-"n have squivalent singularities

at F"t and F_ respectivaly, We could therafore rantatlvely define

1]
gquislngularity of an embeddad variaty ¥, nl.nng an lereducible aub-

variety M of ¥V, at a gimple puint Pﬂ of M,as follows!

TDEFINITICN '3, Vs equialagulat along M, at P‘ﬂ.ﬁlf there

exlats a aectlon "l-l.f':I of ¥V at Pﬂ, traneversal to M, and 8 gsection

W, of ¥V at the general point B, 5f M, alsc tranaversal to M, euch

that the alngularity of W at F_ {s equivalent to the singularity of W

k

1] o
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The trpuble with this "deflolton' 1s that it le no deflnition at ali,
#3 1ong ad we do not koow what we mean by saying that “‘u and ‘F,’t
hava eguivalant eingularities, Howevsr, we can begln by teating this
definition in the case in which the codimenaion g of M s egual to 1, in
which case the troasveresal section are smbadded algebroid curven, and
for thess we know what we mean by eguivalent Slagularidey. Cne
¢btaine in thie case a very satiafactory reault at loaast in charecteriatie

zaroe, via the following:

THECREM |. Let f{x,v; {t)) = @ bz an analytic famiiy of plane

algebroid curves Gt' all centaining the orlgdn % = y = 6, and defined

over an algebraically clased ground field k of characteristic zera,

Lat EU= £l ¥i {ﬂ}} r O be the spacialization of Cl: for ft} —» 0 .

LApaume that {f 1 regular in ¥, and let ,{}_.,!"f be the y-dlscriminan:

el £ gﬁ,?f € k[[I.{t}]]:l. Wrlte ‘-f';-,!'ri = E.fx..ft}]lxm 3 Whets
N2 o aod Eflxt) € kl{x.{}]} Sa such that 200, ft) # 0. Then

tha :[n-lluwlng 1a trusp:

1} If E,fl].{c}} # 0, than Ct and €, are eguivalent,

0
] Converaely, If Ct £ ":,;-, and 1f the lipe x = 0 18 not tangent

e C,then  E{0f0p £ 0.

Dl’
3) More generally , 1f Ct " Eﬂ and if the linea x = @ bgae the gams

intereection multipliclty with ‘-':t and E’g' then ﬁiﬂ.{ﬂ'}} 0,




13,

We now interpret this thearam by loakdng at [ = 0 as the wguakion
of an algebrold ambedded variety ¥ of dimension r = g+ 1, where
g le, ag above, the number of pararaters ti « Ths r elemants
N, tl'tz"" ’ tp are paraimnetars of the local ring of ¥V at the polint
PD. The aguatien ATf = Uy Fabew £ (x, {t}:l:!:” = 0y 1& an egquation of
the critical variaty &5 of the projaction of ¥ anto the afilne space of
the varlablas x, tl'tl“'”tp » To say that E.{ﬂ'.{fi}} £ 0 means to
aay that 4 ix the non-gingular hyperzurface x = 0§ o that space,
Note that /% ia then the projection of cur subvariety M of V| of

codimension 1, deflred by x = y = 0, One then deduces from

Thevremn 1 the following:

THEOREM 2, If cod M = 1, and M {8 part of the ginigular locus

of ¥V, thap ¥ {a equisingular along M at ]':f'ﬂ| s _if and only {f thera axigt

lacal parameters “I'Kz'“"“r of ¥ at Pn‘ such that the critdcal varisty

_ﬁ of the prefection # of ¥ onto the gpace of these parameters has

a slmople point at FE} = n{Pu? » Furtharmere, if V s sguistngular

zlong M at Pl:l' and x4 :H:E...”xr ara arbltrary rrapsavarsal 1nepl

parameters (by this wa mesn that the line X, 7 Xy = oaae F x_ =0

ia not tangent to ¥V at Pg}' then the_corresponding clritical wriety A has

nacesgarily a almpie paint at Ph .
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At the Scientific conference at Yeshiva Universlty last Qetober,
I spoke extanelvely about equisingularity in the case of codimenaion
# = | and gave a number of cther crlteria of equislngularity In this
cage {always for charpcteristic zera), A Umited pumbaz of coples of

roy Yeghiva leacture will be made availabla later on in iniormal

diecurnalonas far those whe arw ntwrested.

A4, Tasting a general definitlon of equisinguiarlity fo a epecial case,

We malntain the assumption that the ground fleld k ia algebrateally
cloped and of characteristic zaro, We cooslder agzin an r dimensional
algebrocld variety ¥, embedded ip an affine (¢ + 1] -epace, an irceduclble
gingular subvarlety M of V, of codimenslon 8 oo ¥, and a simple

point PU of M, We ghall define agqulelngularity of ¥V at P ,along M,

5
by inducton on &, If XprXarraap X arvw pararpetaxe of the local ring

ol ¥V at FD’ we considar the projection # of ¥V onto the adflne rc-space
af the X and wea denote by ﬂx tha corresponding criticzl hypar-

purface ln that swpace, Then widd] C zi«-.x ; aond w (M} bas codlmensicn

a -1 on ﬂ .
x

DEFINITION 3, (Cenjectural), ¥ inm ﬂlﬂ.liniular at the point

P, alang M, if there exlat parametars ¥]resnt, - BUCH that A < A5

squisingular at the point ﬂ{PD’.I. along w{M} .



17,

I have no general thoaory of squisingularity, baved on this Indective
definition, 1 will discuas thia definition in a apecial, but theoretlcally
important case,

There in one obvicus and uncontestable caae of equisingula clty. That
in the caae Io which V¥, a# an algabrold varlety, is lacally, at PU' 3
direet {analyHc) product of M and a transversal sectton W, at Fﬂ .
ALat rneans that, far = sultzble cholce of the coordinaten x| .xa. caa IrH.-
in the amblent affine space of V, the aquetlon of V involves only

e + 1 of the cooardinatea ¥, ¢ BBY

L' ﬂx]'xl'l‘l‘xli'lh = 0,
and M is the subvariety ) = Xy = L,. = ot 1 = 0, Ths tranaveraal
eection *u'.fu at F'L'l (tha prigin xl = xz = .. = :t:r+] = 0} ia given

by the same sguatico { = 0, lo the space ¢f the 3 + 1 coordinates

L NS T H o and OF denote raspactively the local ring of

¥ and Wu at Pn‘ and 4f, for the sake of clarity, we denote the remaining

coordinates x_ o, X BY batos..sb, (g = T~ al, then

LR LR Ly i

{:|'= g[[tlltzlilrltp]}f

and botireees "p are analytlcally independent over « , We sayin

this came that V Is analytically equieingular ai Pﬂ » flopng M,

MHow, let me assumea that the critical wariety &x (in Definitlon 3)

is analytically aquisingulaz st the point ﬂ'{Fﬂl, alang the varisty wi(M],
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Cur varlety ¥ l# than givan by 2n egquatlon

v= i{xlilellllxﬁ ;tlltarlllltp:vl = ':I Er’ = 1"+l],

where the power sexries [ 1a regular in y ; the varlety M ia defined

by s = o = sae = X5y S 0 ; andeceur assumption s that the

y-discrimingnt /4 Tf of § is of the form

(2} A% = g fxh eh, Dlx s %yueeeax )y ct{oh{oh 7 0,

Mote that in the case of aguisingularity in codimenslon 3 = 1,
this assumption 1s automatically satiafled, for In that case we have, by
Theoaram 27 &?f = E_{{x},. {t]'} xlﬁ .

Ancther, theoretically important case In which this agsumption in

satiofled 1o the one in which the critdcal variety .ﬂx heg glong (M)

a normal croeslog. Necapaarily, we will have along #{M)} & normal
crumsing of 8 regular hyparsurfaces, elnce cnd& wiMl = 5 - L1,
That means that /3% will be of the form {2y, wi.t: D o= u:qlxzﬂz_..n:ia
N, I,

Undsr the above agsumption {2}, the following algebraic facte can be
tretablished:

Let (7 be the local ring of ¥ at the point P, [the origin
{x} = {t} = ¥ = 0], and lat ' be the local ring of tho transversal

W - = = o
aection o tl tE b E tp 0 at the same paint P‘D. Thus
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{3 Crs wl{{ah {ely] = selifxh {eh YN /t0txh {th Y0
and

(4) o= M(fxhllnl = wifxh YN/ (8,0}, ¥,

wherse

. {xhyy = st foh vy,

Let Ot and r' be the integral closure of 7 and &
respectively [in the total ringe of gquotienta of these two local rings), Then

{a) There is a natural infection of ' into i, and

{after identification &' < (1 ) ltis true that the elemeats

tl’tz""”t-p wf ol are aoalytlcally independent cver ', and [

is the power aeries ring -::?"[[tl vty ....tp]] .

By (a) we have for y a power aseriea expansion of the form

5 |
{5 ¥y = n+ E“iti ¥ Zuij r tj. toaea Iui"uij““ £ o'y

where #n is the eleament which accurs in (4} . Arsumnption [Z)
impaeen, however, additicnal conditions on the coeflicients: ui, u:'.j' -
of the powsr asriae {5}, 'e shall now state themm conditicms.,

Jince we have asgumed that £, has oo multiple factors, the total

&

quotient ring K' of o{ = tptal quotisnt ring of ") is a direct aurm
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of felde ! = H'ci (say, i = 1,2 .uarh), where 1 = el+e3+...+¢h

ia the decompoeition of | into mutually orthogonal idempotents. Each fald

K; is an algebraic extension of the flald Ke, , where K = k{fx}l, e

conalder a fAxed splitdng fisld F' of the y-palynomial £ , over K,

U

and we embed each KH' in F' by an isomorphiem K' — Fi which i=
i 3

an extenslon of the natural isomorphiam I".'.ei —* K, Let I', = F,
1 1

be the lagat SGalois extensian of K which contains Fi ., Then F' iz the

compodition of the h fields Fil [the F; ara gplitting lields of the L

irreducible factora of fp ! .

Now, let £ be any clementof K', Fareach ! = 1,2, ,.-0 b . we

f“.ii

(1) (Z]
denote by 'Eil . -El' P .E:'l the conjugates, over K of the

«lement of Fi which correspaonds to §¢, in the above embedding
B —» F v ;

N " of Hi in F; hete o
Lat B be the set af elements § of o' which kave the followlng

t» the relative degrea of Fi aver K.

property 1 Forany duj = I, E.ee.eh andany @ = 3, 20...,1 ,

E = 1-3.--..f;j . the gquotents

)8y, @) 6

© T4 j j

are intearal ouar k[[{x}]] ¥

It ig eapily seen that R 18 & ring between o = K[[JxH} [n] and o'.
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Thern we have

ik} A pecepmary aod adficient condition thak the diacrimiaant

AYE  be of the form (2] is that the coefficienta Uy uij' suns Of

the power serice [5) belong o R,

If cur varlety V wae normal at Pa‘ then (V= (., o= o',

& ﬂ'[[tl.tz. “ea 'tp]] , aod we hava in thie case the trivial altuation of
analyiical aquisingularity of ¥V along M, at Pﬂ. But if ¥ is not normal,
then R will be in general a proper overrlog of ¢, and if we chovee the
coefHelents L uij'" . o R, bt not all in o , thes we get a situation
of equisingularity which is not apalytical. Thus thia procedure gives ua an
affwctive tool for a general constructon of an equisingularity phenomanon
of the non-trivlal fi, 8, , non anatytle] type.

If we arz in the complax domain then {4} ancd the fact that the coefflcient

of the power series [2) are all in R showa that

) (R
o i T
N nol-
where the T[u} are the rootg of 1 and the ﬂ{al are tl¢ poota of

(0 - -
.[ l&.ﬂ- ]l2|l‘ii| n - ﬂl +nz+l-l-!+ r.h‘i u# ﬂ' }'

By means of {7} it is possible to extend a proof given by Whitney in the

cape of codimension | and show that in the amblent afiine [r + 1]-space
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of ¥, the variety ¥V can be isctopically deformed into the direct
product of ‘F-'D and M., Thia conattutes a fairly conclusive taxt
of the corractness of the inductive definition 3 of aquisingularity

in this parttcularc cose,



Un the structure of compact complex analytic surfaces

by X, Kodaira

By a surface we shall mean 3 compact complex manifold of
complex dimension 2, We fix our noctation as follows,
2 a suriace
hu ¢ the V- th Bettl number of 3,
c,t the V- th Chern class of 5,
(F: the sheaf over 5 of germs of holomorphic functions,
g = dim i (5,5} the ircegularity of 8,
PE x HEI{S,E"}I: the gecmetric penus of 5,
Note that € 2 and €, are {ratlonal) integers,

By a theorsm of Grausert [2], any surfice is obtained from a
surface containing no exceptional curve (of tha first kind) by means of
a finite nurnber of quadrle  traneformations, Hence, in order to
study the structure of surfaces, it suffices to conslder acrfaces

confaining no sxceptional curves, In whal follows we assame that all

surfaces under consideration contain no exceptional ¢urvas,

CEFINITICN L. By an elliptic surface we shall maan a surface
% with a holomorphic map & of § onto a non-singular algebraic

curyve & auch that the inverse frmapge # -l{uj of any general polot



u € A s an elliptic curve, We call A the base corve of the ¢]liptic

surfacs 5,

DEFINITION 2, (A, Weil), Wa call 3 sarfare § 3 K3 surface if

§ is & deformation ef a non -slngolar quartlc surface lo a projective
[

- Y

1-space. L B

MAIN THECREM. Surfaces {contaleltg no exeptional curvea) ean

be ciasnifiad into the following geven clasees :

I} the clans of algebraic surfaces with PE =0,
1) the clags of K3 garfaces;
I1L) the class of complex torl {of compley dimehston 2) 3

IV} the clags of alliptic surfaces with bl A0z, pg 51, c] 0,
"l'r]' the <lass of ﬂlgahrai{: eurfaces with PE :.: 1, :13 =0 ;
Y¥i} the clasa of wlliptic sorfaces with hi =0{1) Pg : 1;

V I} the ¢laps of surfaces with hl =g=1, p =0,

£
clams h P c v 2 structura
1 B 1 1
i even a alpcbrale
i | 1 1 =0 0 K3 surfaceq
MI 3 1 =0 a complex torl
¥ tven . #0 0 eltiptic
L evean . + algebrale
Vi odd N 0 elliptic

Vil 1 0 ?



An elliptic surface im a deformation of an algebralc surface if and
anly if ite first Pettli number ts even (nee [4] ) . Therefore the following

theorem [allows from the main theorem.,

THEOREM . A surface is a delormation of an algebraic aurface
if and only if ite ficet Bettl nomber is even,

Buamark: The clage VIl contalne many elliptic surfaces. In lact,
fer any preassigned finite abelian group :ﬁ. ' .w{t fiod an elliptic surfsce
of the clase VI whose firet toreion group is lsomorphic to A, We
obtaln ¢xarnples of pon-¢lliptic surfacea of the class Vi as follows :
Let '!I.'-:g denqte the apace of hwo complex varlables {tl, 32} and lat
= m:-'_'. =i, 0) . Choose a properly disconHnuous group ﬁ of analytic
automarphlama without fixed points of U In an appropriate manner,
Than the quotlent surface § = Ll.-"'g is a non-elliptlc auriace of the
class Y, Note that 5 = U.-'"? im & deformation of ap ¢lliptic aurface,
Aw far s we know thete le oo example nf?a/:urface which cannot be
defnrmed into surfaces with non-constant meramorphic functiona,

We ahall cutline a proof of the main theorem, Let e‘.E"* be the
multiplicative ahezaf avar 5 of germe of nen-vanishlag holomorphic

functiong and lat Z denote the ring of rational integera., 'We have the

EXACE Seduancyg

-3
&
{1} s — Hl{s,:ﬁ —n-Hl{s,&"} ety Hz[s,z} — Hzts, S —



Each element F of HI[E, .:‘j*']- repregents a complex line bundle over
& and clF} = 3*F 1 the Chern clasp ol F . Let &(F) dencte the
sheaf over 5 of germig of helemerphic gections of F, In the case of
cornplex line bundler over surfaces, the Ripmann-Roch-Hirzsbrack

thearem can be formulated ae followp :

4
2) Y N M EIEN = 3 e riste P e ), ez alR)
=0

{aee Atiyah and Singer [1] ). This theorem implias the Noether {ormula

2
(3} 1z:pg-q+1} =t

sod the Riemann-Rach inequality

(4} @im B (3, &P + dim HO(5, (K-F)) 2 Lt e o B, ~atl.

whars K denotes the canonical bundle of 5,

THEDREM 1. Ewvery holomerphic I -form oo a surface is d-slozed.

THECREM 2, Let @y Pprrenr P be helomorphic i -forms on 3 .

If @yenseoy @ are lnearly independent, then the @-closed | -forma

Woaneer B0 ey En are d-cohomologically independent,
Lettlng { I‘I*..,, | R rh } be a Betti bage of 2Z-cycles

3
F
on 5 and dencting by I 1} l"k.i the interaection multiplicity of l'J



and rh . we deflne bY and b” to be regpectively the numhber of
poeitive and negative eigenvalues of the non-alogular aymmetzic matrix
Ll 1':1.. ‘J."h]-} . Moreover wa denote hy b the number of Hnearly
independent holomorphic 1-ferma cn 5, With the aid of Thearems |
and 2, wea obtpin from the Hirzebrach lndex theerem and the Noether

forrmula [3] the equallty

2q - b +h+—2ps =1,

l

while we have the inegualltims

ﬂ'ﬁl’%h]::hg’h A b ?__"EP -

Henee we nbtain the following

THEQOREM 3, If bl la even, then h] =2q, b =2p + 1 and
h=zgq. II h] is odd, then h1=3q-l,b+=3p and h=g -]
CORCLLARY. We have tha formula
3 _ J?Iﬂp L I if b] s evano ,
{5} ¢, “+By+ b = B
;lﬂpg*‘-ﬁ, 1f hl s odd .

Let na consider the casa in which bl ils even. By the abrve

results there exlst g Hnearly independent d-cli.ged holomorphic
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& Bettt bane of 1-cycies on 5 and let

ml-rj =-|‘-I,..-jﬂ;p -

Then, by Theoram 2, the vectors

-.,l'..l.lyj....,ﬁ.l I. j=1,3,...,2q+

i 1t 3J
are linearly independent with respect to real cosfficients and generate

a discontinuous subgesup = of the vector group Eq ¢f dimension q .

We call H = 'Eq:".,ﬂ the Albanese varlety attached to S5 and define

a helomeorphic map % of § ioto g:i in ap obviltua manoner,

THEOREM 4. If there exist on § two algebraically independent
meremorphlic lunctions, then 5 is an algebralc surface, If there
exiats on 5 ene and only one algebraically independent meromorphic
fenctivn, then 5 is an elliptic surface [xec {3] 1,

The follewing three theorems { ollow immadiately from this

thedr em,

THEDREM 5, I there existe on S 3 complex line bundle F
guch that dim Hﬂ[ﬁ. Ci{FI} > &, then 3 is either an algehraic

gurface or an elliptic sutface,



THEQREM &, If PE 24, then 5 s elther an algebrale surface

or an clliptic sucface .

THECREM 7. If h> 3, then 5 is either an algebraic sorface
or an elliptic surface,
Combining the Riemann-Roch inequality (4} with Theorem 5, we

ohtalp the follewlng two theoremas,

THEOREM 8, I there exizta on 3 a complex line bhyundle F
with vr,[F']la >0, then S in an algebraic surface.

THEOREM 9, If 1:1E » 0, then 3 is an algebraic surface,

THEQREM 10, If l:l i# even and If PE =0, thew 5 is an
algebralc suriace,

Froof: Since, by Theorem 13, h* =1, there exigte an alement

b .
¢ EHT{(S, B ) with cz »> 0. Moreavar, zince HEI:S,@"] vaniaher, the
¢xact sequence (i) showe the existence of a complex line bundle F

over S with ¢{F) = ¢ . Hence, by Theorem B, 5 ia an algebralc

gutrfarce,

LEMMA 1, If psgl. then clag 0.



THEOREM I!, Assums thal there eviste of 3 no meromeorphic
fun<tion ¢xtept tongltants {aod that 5 contaiae oo exceplional curva),
Then the irregularity q of 5 ie not greater tham 2 , If g=2&, then 5
18 a complex targa, U q =1, then the firast Eetti number hl ef 3 im
equal to 1 and the geometric geaus pg of 5 wanighes., M g = 0, then
the firgt Chero class € af 5 vanishos,

Piood. A} The case in which b] ie aven, It followe from

Theorems 3, &, 7 and 10 that ?l:-i =2, g=h<2 and PE =1, Henca,

by Lemma 1 and Theorem %, ¢ 2. a.

1
i} q ie ¢qual to either 2 or ¢, Infact, {f q were sgual te !,
then the Albanese varlaty H would be an alliptic curve and the
meromorphic functions on ™ would induce non-constant maremorphic
functicong on 5,
lil ¥ 4 =2, then the Albanese variety H ina cornplex torus

and # maps 5 biholomorphically onte <F |

Hi} If g =0, then we have
o, . i 0
dim H (3, 8(-K]} + dimm H (5,5(2K}} > 2.

Héznce , in view of Theorem 5, dlm H'}[S.tf-'ﬂ-l'[:l:l =1 , while

0
dim H (5, F{Kl} = pg =1 . Cotsequently K ip trivial and e vanishes,



B} The case in which hl in add, It followe Irom Theoreme 3, 6,

=2g=-1, ga=h+1, h+=2:p ;s hed, pggl and

Tand 9 that b <
1 £ =

1] Suppose that h = 2. Then thare exist onn 5 two linearly

independent holomarphlc | -Jorms q:_i and mz and @ A~ @ 5 doee not

vaniah identlcally, Hence pg =]l and, by Lemmma 1, €| 2 =0, The

l

formula (5} theo provea that b' = =fi , Thig ir a2 contradiction,

ill 3uppoee that h =1, We take a d=-clased holomorphic 1 -lorm
gon §F apd finda 1-form & of type {L,0}) on 5 such that
dF= a A @ and euxch that 0+ ¢, @ and _-I.E generate the d-cohomology
grouwp of 1-formas on 5, We thea obtalon muolti-valued helomorphic

functicns wl and wz on = such that

dw, = @, -d“rz:ﬂ‘-llwlﬁ_

The exterior prodact dwtm dwl doea not vanish at gach peint of 5,

Heace the gpace Ez af the complex variablas Wy atid wa Inrme the

nniversal covering surface of 5. The covering transformation growp

of € 2 vver 5 ig generated by the affine transicrmations

gj:wl —h-wl * .::rj, wz—}waiajw1+|3j  je21,2,35,4,

ol which the egefficlonts matisdy the cenditions that

o =0, ou -& 0 =R

4 M T MY jhﬁal' for j,k=1,2,3,
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where the 25, ATE integars and naiﬂd;‘ G . Itfollows that S ie an
elliptic surface. This contradicts the non-existenca of meromorphic
fupctions on 5.

iii} Thus we sae that h = 0 and q = hl =1 ., Therciore the FPicard
variety [» = HIIS,J}‘},."H]{S. Z) is lsomoxphic to the Lia group C/E |
Suppoxe that FE =1 . Then, for each complex line bundla F €5, the

inequality
4] O, .
dim H {SJ.:}{F” F dim H [a,ﬂ"{l{af‘}] g i

holde, It follows that there exist infinitely many irreducibie corves on
& - This contradicte the non-exiatence of meromotrphic functico oo 5

{gee [3]} , g.e.d.

THEOREM 2. LU the irregularity g and the firgt Chern class
€ of S5 both vanlsh, theo 5 is rp K3 purface.
Prooi: Dencting by @ the sheal over S5 ol germs ¢f holomorphle

vestar flelde, we have
1 2
dim H {5, &) = 20, dimH {5, 8} = 0,

Hence there exists a complete complex analytic farnily of amall
tdeformatione 5, of 5 depending on 20 offactive paramotors

111- Tan auny "zu} {ase Kodaira, Nirenberg and Spencer [5]7, We lind
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4

t such that EI le a non-aigebraic elliptic surface of wh-i::h the singular
fibras arae either of type 1] s or of type U [compare [3]) . St ia m
{ibre preserving deformation of an slgahratc aelliptic surface B which
possessed & glabal holomorphlc section. B cao ba descrlbed explicitly
as (cllowa @ Lot Il:"'it dencte a projective plane oa which a system of
homogenaous coordipates ey, 2} is fiwed, Take Pwo coples IPE-: 'Itﬂ

and IF‘E‘.-L El ak IF"EH. { gad farw their ynion

wWertkc UPiC

0 1

. 2 .
with {Il, "_.fl, s u],l EP " L, i

by identifying {x,y, 2. u) EF °x € ,

¢

5
and anly i uulrl. ¥ =X, uﬁrlﬂ_-,r. 2 =T . Then B is the

eubvartety of W defined by an équation of the form
4
2 3 2 3 12
¥ = - 4 ir‘rﬂ::: [l l_'u,—'ru:l-l-:. | i' {u—ﬂ'u'.l = 0,
=1 W I1
Teo maka expliclt the dependence of B on the coeflicienta
T=[T., TI' PR TB' Erl. e ﬂlz] . We write B-r for B. Clearly

Er ig g deformation of Bﬂ = B Henca 5 is a

{I-l'l'l'rliﬂl“'*l'}} '
deformation of EllltI . Let 0 denote a non-plogular quartic surface in
a4 projective J-apace. The irregelarity and the first Chern clasa of 0
both vaniah., Hence, by the abouve result, @ ia g deformation of Bu

and, conaequently, 5 is a deformation of @, Thus we age that 5 isg

A K puriare.

f"\
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THEOREM 13. If the canonical bundle ¥ of 3 is trivial, then
3 iz a K3 purface, a complex tores, or an elliptic eurface of the form
Ulzfﬂ » where G ia a properly dlecontingous group of alfine traneformations
without flxad points of the space {L'-?' of two complex variables El’zl
which leave invariant the 2-form dzl ~dz, . The firat Bettl number of

the elliptis aurfiaca E-lf'rﬁ in equsl to 3,

LEMMA 2, If bl s even, pgh- 1 and ¢ = {0, thea the

canonical bundle K of 5 ia trivial,

A
LEMMA 3, U FE in pagitive , € =0 gnd € A0, then 5

is an elliptic aurface.

MNow, with the aid of Lemmas 1, .2, 1, we derive readlly Irom

Thetrema 9-13 the main theorem,
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ON DEFORMATIONS AND YARIETIES OF MODULI

1. tatsuaaka

Bl. The noton af polarizatien 1e well-known by now, But we
shall atart with this definition, Let ¥ be a complete non-stngular
algebrale varlaky and Ga{"-’] the proup of Vadivisors which are
aigebraically equivalent to zers, Danote by TV} the group of torsion
divieore en ¥ and by (V) the order of T([¥}). We consider a set

J_af V-diviaors which is defined by the fsliowing conditians:
{a) X contains a divisor x en X which g non-degenarate {ample in
the sense of Grothendlack):
(B} & V-divtaer ¥ dsin X if and only if there 1a a pair {r,s} of
intagmre which are ralatvely prime to the characteriatic p and to
Yl suchthat rX = aY rnod Ga{E] .
Weo coneider that the et ). defin=e a structure on ¥, ¥V, together
with this additional atructure, ls depsted by Y and 15 called =

polarizad varlety, Wa czll V the underlving variaty of ¥V and L

the structure aet of ¥ . A divieorin | is called s polar divisor

wf V.
BEMARK, If one wanta to deal with a varlety over 5 discrete valuatior
ring,of which ¥ s a gereric flbre, it la convenlant to take poto be

the characteriatic of the »esidns flald,

Basically, we shall follow the tarmtinclogy and conventions of Weil's
"Foundaong of Algebraic Gaometzry" ,
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FROPOSITION 1 Let ¥ be a poiarized variaty, Then there {a 4
polar divisor h’ﬂ with the followling properties: {i) & V-divieor ¥
is & polar divisoer of V if and anly if it is algebraleally equivalant to
mxn where m i@ 2a integer; {1i} * nonedegenerate pelar divisor on
V¥ is algebraicaily equivalent to m}{ﬂ whare m i3 a positive integear,
Moreocvar, tha claas of X_ mod Gaﬁ’} is uniquely determined by
these conditiona,

}fﬁ is called a banmic polar dlvisor of ¥ . The gelf-intersaction
number of J{n ta calted the rank or the degrea of ¥V, A pon-aingudar
eubvariety of a projactive space can have a natural polarization such
that a hyperplane sacHon ie = polar divisar, We call it = patural

polarization aod all such varietisa shall be geayred bo garry their

natural palarization,
Let U be a complete {proper) abatract variety cver a discrete

valuation ring & , O the caponical morphism of U gnto {7 and 1;

the maximal jdeal af®y, Then ﬂ-l {E | 1s called the speclalization

of ™l (0} everr, If X iaa cycle on a ganeric fibre ol [al,
ratlonal over the guotient field k oftr, it defines a Uecycle X

aniquely such that f. -:1"1[4}} = X ., and that cvery componont of

% nn"]{ 2 ) whichis sfmplo co U ja proper. Then . EL'I{J{:I in

4]

called (he apacilization of X ovare, % . u'l{ } 1m ati]l the ppeciblizatien
of X ovar 3 discreta valuation ring which donitnates +

Eet ¥ be a polarized varlety, ¥V Ita underiying varisty and &
a fleld of definitlon of ¥. Let ©¥ baa diecrete valuation ring of k, U

the variety ovar 7 with the canonical morphism @ whosa gererle flbre
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ia V¥V and W (he apecial fihre Il'l[f ! of O, Agmurmme that W i the
underlylog variaty of a polarized variely W and that a baslc pelar
diviegr I{u of ¥  apecializes to a polar diviesr of W over T . Then

we gay that W is the specialization of ¥ over ¥ and write

¥ = W ref, o .

RBEMARK. When ¥ —> W ref. 77 , then rank (¥} > rank {W).
When U7 contains the rationsl number fleld, we have rank {¥} = rank [W})
becaunge of Hodge's theorem, Oo the other hand, when the guotient fiald
of LY is of charzcterlstc p, MNiehl construct=d an sxample such that
raok (Y] > rank [_'l:_'l':l + In hiz example, W laa suitably polarized
Abelian varisty of dimenaion 2 and one can chooae ¥ a0 that rank (V)
axceads 2 glven positive integar,

In ganwral, the roncept of specialization is not invariantly attached
to 1svmerphiam claaees of poiarized varieties, Howewver we have the

follawing result.

PROPOSITION 2, Let ¥, ¥', W, %" he four polarized
varleties, k a common fleld of definditdon of ¥ aod V', 7 &
discrete valuation ring of k and assume that EE s ¥} —> {l"-f. Wi refl, 17,
When thers 14 an fecrnorphism § of ¥V 10 V' defined over k and
when W' ig not ruled, the graph of [ specializes to the graph of

an leomarphiem between ¥ and W' over T .
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Let now ¥V and W be two polarized varietiee and the ¥ , for 0 < i =

1?" =¥V, Em = W, be a finite set of poiarized varieties, Sseume that

sither }_"i and Ei-lrl ara laomorphic to each other, or the coe lé a

speclalization of the other over sorme dlecrete valvaton ring, Then wa

gay that W is a defermation. of ¥V, ¥ is e deformatlen of % or ¥ and

W are deformatone of sach other, M rank [Ei:l < d for all [, we #pay

that the deformation in of type d. Danote by T the et of dwformaticone
of a glven polarized varlaty ¥V, Decnols alaoc by Ed the aet of daformations
of ¥ oitype d for 4 > rank 1[1’]'. in the case of characteriatic O, we

have T = .. Tharafore, we ahall consider only Ed Irom now on,

d
Wea introduce gn aquivalénce relation -~ in Ed «» We gaythat U and W
in Ed ara equivalent and write U ~ W ifapdonly M U and W

are lgomnorphic, The guoHent space of Ed by this eguivalance relatlon

will be callad the spaca of modull and dencted by }/] . ©ur basic problem

in to find cut the atructure of this space. One lp fempted to say thet it is
an glgebrale vprisaty, or at least a finite union of such variatlea, Further-
more, one in tempted to say that the largest dimeansion of the tnaximal
componant sap be dencribed in tarma of numerical invarlents of ¥

(cf. worke of Hodaira-Spencer), Ag it i well-lmown, these are true

when atne dsals with curves or polarizad Abalain varietHee {cf. worke of

Batly, Mumierd), In general Id can & expressed as a unlon of countably



many irreduclble algebraic familles of polerized varietles up to {apmorphiama
In order to pereus our problame further, we introdoce the concept of a
universal family,

Lat __:J'r/ be an algebratc family, 1,0, a union of = fioite aet of lrceduclble
algabralc familles, of non-singular varieties in a2 projective space such that
(1} A mambar ﬂié;; in a membey af Ed ;

(il} A member of T4 ia laomorphic to a member af 27,

Theno we aay that fj’zir’i.! a uolversal family of I:d. « The universal fmily

of Ed axiste if and only 1f the following 18 true,

There im a constant c, deptnding only on Ed ; such that whenever

W 18 3 member of ‘Ed and Y = baale nolar divieor of w, mY is amples

(wvary ample In tha sense of Grothendieck} for m > ¢,

Of course, this conjecture ig true when ¥ is a cucrve or 4 polarized
Abelian wariety, When ¥ ia a pelarized eurfzce, this conjecture ig
afflrmmative and can be deduced from the followlng thearem,

THEOREM 1. Lt ¥ be a non-singular complete surface and X
F2)

€ o and

a non-degenarate V-odivisor, Let ]pa{}'-}l < € v F A 2

|:p-a{"'-":| | 2. . Then, there is & copatant, depanding only on

3

PR PY auch that m¥ lo ampla [or m > «,

2" 3

When the dimenalon of ¥ is highe# than 2, nothing le known in
general, Xim ahowed that if ¥ can be mapped into Albanese variety without

fundamweptal subvarietles, tha subast of Ed. conelating of polarized
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varietisa with the same property has a univergsal family, Agaurning
only that E can ba mappad inke its Albaness variety without decreéasing
its dimension, we can show now that Ed hae a undversal family,

& weaher problem thap the exdetance of a universal famlly, which
seerria o be worthwhile to solve naverthaleas, 1a the following., Let X

Le an ample polar divieer of ¥ , fl &2 nop-degenerakbe projsctive

embedding of ¥V determined by X and ?‘ a maximal algabrzie

1

farnily of nonspingular prpjective varieties guch that each component

]

.?1‘1 contalna f]{E} . Laet £i} : be the guotient space of .-,':-'?1

which we pat by ldeatifving members of -;"'1 which ara imcmorphic

ta each other, Let X_ = m,X, where m, le & posltve integar, and

-

define [, A

3 ! :}n AN f

2 1 'T;.I':.l " '}’ﬂl . When we continue this

2
procass, we got a sequence of quotient apaces {0 1} and morphiema

B¢ s , rt {me gan introduce the gquotient topology on F"J'e‘{

+1 "
and B becomes an injection with respect to this topology., Then cne can
ghow that thers is an cpen subeat ‘-"ﬂ..‘i on agch ?'Li a which in every-
where dense In fi ; * *uch that it has 2 structure of a wnlon of g finlte
st of irradurcible plgebraic varietea, Moreover, By Induces on sach
'.'r:.-_ri 2 biratlonal morpkiam auch that the clogura of the image 157]‘1“] .

Then, one could agk 1f there 1s a constant ¢ auwch that ) im 2 bijection

when 1 > ¢, When the gnawer to thig 1a affirmative, wa shall cell



’?}m' for m > ¢, alocal universal famlly at V,

CUoca the gquastion of the axiastence of a unlvarsal family of 'td T
at lezat the sxdgtence of a logal unfvereal family at ¥ 1s settled affirmatively,
the study of the space of moduli % [resp . local space of modull} can be
radueed to the study of the guotient space of the unlversal family
[resp. local universal farnlly). But the problem of studying a quotient
space of ao algebralc varlety with respact to an equivalence ralation is
not a trivial problem, For this purpose, we have o znalyze our
equivalence relation on a universal family (resp, local undversal family
more closaly,

THEQOREM 2, Lektua assume that a univareal family of T,

{reap, local universal farmndly at V] axists. Then there axiots a
universal fatnlly {reop, loczl undveraal family) “# with the following
propartieat

(i} :ﬁ 1s a undon of a Fintte set of irreducible maximal algebralc

famillica f?-’; in a projective space;

(i1} Whes U isin <% and W fain 5 suchthat U ~ ¥ ,
then W isin ;:’;"'fi i

{iii) Let ¥ bea U-divigor which is algebraically egquivalent to a

hyparplane section of U  and call ._"-LI {Y} the corresponding Imvertible

sheaf orn U, Than hi{i{?l} = 0 for i » § whanevar U £ .,



From now on, we ahall cotnelder only thoee universal famllies
(reap. local universal famillies) which aatlefy (i), (1), {ill) of the
ahova theoram, Whan that is s4, the study of the gquotent spaca of ':-"
can be reduced substantiably o thesa of =0/ y+ Inoxder to do an, we shall

assumen that !:d does net cootain g rulad varlety . Lat .'F'i be the

Chow-varlety of .—.-';'r_i and denote by O0f{x! the orbitof = £ Fi with
raspact to our equivalepca relpton, Then sur aguivalence relaton satisfies

the I[ollewlog comditlens,

THEOREM 3, (I} The equivalence ralaten on l"'1 in a closed

eguivalence relatlon; {II} 0(x) ite 2nirreducible and locally closed

subvariaty of F (IH}) L&t k be a flald of definition of F x

i’ ;!

apoint of F, and . x' a point of I"‘1 such that x — x' ref. k.

i
Identifying Of(x} , O{x') . with cycles in the ambiant projactiva spaca,

we have Q(x}) —* mO{x') ref, k ,where m i9 a ponsitive integer,

REMARK, Actually, m c¢an be describad in terens of the relative

-

i * but we are not

changa of groape of antomorphiems of members of -__:F

going boto the detall of chis fact,

B2, MNagata has conatructed an example of 3 non-alngular locally
clowed subvariety of & projectlve space, carryving an equivelence ralation

which satisfies {[), (I1}, (M1} of Theorem 2, asuch that the gquotlent space



ia not an algebraic variety, On the other hand, we sncounter guite citen
an squivalence relatlon of this type on an algebraic varlety ln algebraic
goometry., (parhaps omitting the condition that 0{x) le irreduciblel,
Morepver, even if the gquotient apace 18 an algebraic varlety and Fi
is non-~singniar, it cannct e non-singular in ganaral, Therefore, it
seatna to be dealrabla to have gome theory which eliminatea thess
difficuldes, For thia regeon, we shall introduce the concept o (-
varleties and (J-manifolde, which can be dascribed briefly ag Icllowa,
Let ¥V be an algebralc varisty defined over a field k and T
a k-cloged gpuhast of ¥V % ¥V . When F im a point of V, define f‘{F}
by # x Vv n T = P xT{F}, Aesume that (¥, T) hae the followlng
propertlea, rt ot T . ,1

(a} Ewary component :l‘i oi T hae the geometric projection ¥V on

[ - v oae— Fr. - '=___.. =T
aach factor of the product VWV & W . .nL'.- 1:_.1. .1:*. .:
(b} T defines an equivaienca relatlionon ¥V <. 7. T o7 1-‘, ,

{e] Whem P and P ar-u'p-::inta on V auch that P' is 3 speclalization
of P over k, f‘{;}iu.}; uniguely determined specilalization of

f{P} over k over the speclalization P —— P’ raf, k;

{d] Whern P ip a generle point of V over k, every component of
T"{P} is Beparably algebraic over k{P| .

it can ba verifisd eaetly, using Theorem 3, that the equivalence

r&lation on Fﬁ1 satinfies theds four gondltions.



Lo,

Let iY be a quotient epace of ¥ by thiz equivalence relatlon and
@ the canondeal map of ¥ on |7 ., Wae make [¥a topelogical space by
taldng the quotient topology and calling it a Q-varlety., Let k ke a fleld
of definldon of ¥V guch that T= X '5,"1 1s ratlanal over it, k 18 then
called a flald of definitlon of LY, When P taa polat af ¥V, (P} ia
called a point of X, When F' is another poict of ¥ such that FP' 1ia
a spacialization of F ovar k, we say that @(P'} is A spacialization
af @[P} over k, Mext, assume that T{P} containe a eimple point O
en ¥ andget (G X V). T= Q= rtﬂjll;'{iﬁu} then uniguely datarminad by
T{F}, i.e., by @{P), Hence wo denote it by T{p{Pl}. Let Tle{P) =
= aix + L hY be the reduced expreasslon for qu:lf?!] such that

i 3
a, ¥ Glp) and b, @ Ofp} . Denote T aX, by T {e(F)), and
T bj‘fj by I l:.n:PHP + We call 9{P) a regular polnt of % , and a
p-tregular peint if T {mEP]iu # 0, M ¢[F) fa a p-regular point of
i 1DF), has a emallest field K, containing ki over which it ls
rational, Denote K by k{g(P)), It can be chown that thia field is
a#lac a smellest field, contairdog k, over which ™ {»(F)} is raticnal,
If pi{F) s not a p-regular poiot on 'L¥, aat T {F} = v El and
Z =T E.i » £ hana smallast fisld K', contalning k, aver whlch it

is rational, We denota K' by klw(Ph .
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REMARK., When ¢{P} i» p-regular, we could assoclate K' over
% by means of the lztter method, It can be ghown that K' rmontains kip(P))
and that the former ta a pursly inseparable axtacaion of the latter,
Morasver, when ¥ 1a non-singular and T {w[F]}p = 0 , it can Be
ahown that K' = kw{F}.

Uslng these, the concepte of aubvaristiea, regular aubvaristies,

p=rugular subvaristizs, flelda of definitlone of there subvarieties and

dimensiona can ba dafloed ae uaval, The aame 1s true with the con-

cept of product, Then a point on the product ie p-regular if and only

if each factor is peragular, L&t Sl he a product of two T =varieties

and '-:i: s prregular subvarlety of | T %/ Fwith the projection ::-:; o '"[_.:“. The

index [j : "_?-‘] gan be defined in ths waugl manper. 'n'hu.a:f:*;.' =’l;;ﬁand
e L3

[I-_'_j 717} = 1, we can define a ratonel map of 1{_‘3"‘1ntn;'_;_.‘" . e say that

this e p 1s defined at a polnt ~ 1f there is a poregular poing = £ =»

u;ﬂ*:'“ﬁ.”fﬂuch that it 18 a component of £ 0! I'ig ., aing thema, we can

Introduce the concepts of a mmorphiem, a biratlonal correspondence

and aty leomorphism,
whan * conaists sntlrely of peregular pointe, we call it a Q-

manifdd, When the /® are Jemaniiclde, finite In number, and the
fji isomorphisme of opon subsets of l'.h:;L ‘i

ooy e £
graphe of the fji ars cloged on tha | ¢ P and that fji o Ly - ij ¥ .

Itnber th-;”'-'j auch that the

Then we can glue the'.;]”'i tcgether by mepgns of the Ijl and get an

abatract Q-maunlfold, A eubvariety of an abatract Q-manifold may oot
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be an abatraet C-manifold, 2 gubvaristy of 2 Tomanliold maynot be a

{uvarlety., Henca, we deflne a Deaubmandfold of an abstract C-manifold

by meacs of an abatract Q -maclfeld and of an injection map, . It is an
this abetract =manifold that we have a complete theory of intersection-
multplicitiea wxcept for the criterlor. of multiplicity 1, when we allow
the muitiplcites to ha ratlonal oumbers,

Thud, we can deal with a D-variety ae 1f it i& an abetract algebrale
varisty as far as gualitative problama are concernad, In the same way,
we can handle aa abstract = -manifold as U it s & non-siogular abstractk
varlaly whensver quantitatve problame are concerned.

MNow 1t would be clear {rom Thecrems 2 and 3 that the space of
modull [reap, local space of meduli at V) le a wnlon of a finite get nf
(-varietios ag noon as a univaraal damily {resp. local universal family}
exists., By Theorem I such ls the case for polarized suriaces, Moraoves,
the vearietles of meduli of curves and polarized Abellan varieties of
bounded ragnk ara Q-manifelds, the latter part of which generalizes
Satake's regult haned on the concept of ¥-mantfolds. Thus, our resull

¢ ounld be regardad as 3 basic step in further development of the problemes
of vnoduli, But atlll at thie bagle laval, there are sorme intersagting

unsetiled problems which are implicilly contained in thia note,



THE BOUNDARY OF MODULI SCHEMES
by David Mumiord

o . .
i Discussion

To begln with, what ig a variety of modull T Start with the get of

all non=gingular complete varieties of dimenesion n and arithmetic genus
p. For each igomorphism class of these, take one point @ then try 10
put thewe pointe together in g variely, Tharwe ale pome more
raquirements : a"nearby' pair of varietiee “1’ ‘ir'z ahould correspond
to a "nearby' patr of poiats @ e, g.

Let X = get of isomorphinm clasaes of ¥'a

LI ’:.—:g im "opan' , Il {or all {amilies of varicties of the given typa,

varietiea ofy
':_t'g,rpe dLEMr CYETr an Cpen get in the parameter apace,

Anather regulfement i that for all familiea

t; Yo 5

SUpPOES ¥OU maAp 3 to A by asgigning to each = €3 the clase of the
fibre w - () : then this map should be algebrailc.

The problern:, in this raw form, has becn modified bit by bit a0 .as
to rmmake it more plausible

{I.] Instemnd of classifying "bare” varicties ¥ , ¢ne seeks (o
claseliy pairs {"-F,E’i where E‘ 1 3 numerical equivalence clags ol

vely ampla divieors on ¥V,



(Il Then break ap the set /é via the Hilbert polynotnials of the
diviaocrg in %: wvir, [or every P, let ,—"3 F = faom, classas of E‘f,%]

much that for gll D € -?_'T
Bi{n} = h:ig_,.,. (nD} }.

Mow we are cloae to g goad problem ¢

for all D € E’

for all bases of HDW. o 1IIIri,El']' )} you get & canonical immeraion

= {n=dim BV, o (D)) 41 }

n

¥.1. hyperplans secticns are linearly eguivalent to Dk .

1 e, /g F e certpnin met of spbvarietices VvV of ]I'-"ﬂ

certain aquivalence relation, especially projective
equivalence '

(1} . Why inelst that ¥ be non-siagular ¥ The ooly reason appaars
to be that over € l[amnilies of pon-alngular varieties are locally
differentiabiy trivial - so one can view them as families of complex
atructures on & flxed differendable yyanifocrid, {(or, as in the
Bers-Ahlfors approach, oo a flxed topolagical manifold) . Algebraically,
there is no polnt : lat's let ¥ he any complete variety at all, maybe even

redacible and anadma that % s g ¢lass of Cartler divicors,



To go further, let's stop and ask what problems arine ; firat we
should take a broad look at the topelogy which we are getting by
throwing in all varieties - typically it will be very ua-separated ; secend
we should try to find open subsete U = % P such that, i their induced

tcpology, they pre separated, and "compact'" i poesible,

[ Thié eneans that U U could be given the siructure of 2 modult
wariety, it would turn out complete § and it also means, directly,
that if {¥,Z) €U, and we specialize the gronondlieid, thea we

can find a specialization (F,51 1 of (V,2) alsoin U, ]

Thirdly, we will finally have to find out if U can be mada into a variety.

{(1¥.] We understand the lagt problem better when we realize that,
¢.g. via chew ¢oordinates, alrmicat all of U is bound to come oul as &
. F -
variety, We aaw that ,ﬁﬁ wans a guotieat of a plece 9‘,:';— of the chow
variely by an algebraic equivalence relation. Such guotients always
exist birationally, i, e, Ior a small encugh 2arizki-open subscta
* L
U o . [V /raodule equivalenca relation] will be a good variety, S0

rd
the 3 problem is like the firset two

The only problem is to pick the "houndary'' comnanents shrewdly,

.4, ko declds which arn-=panesria varietes to allow |



.

there again, it would prejudice tha isene 1o think that we should necessarily
uaa all a.ndI,"nr only non-mingular varieties, And the choice should he

made by a) checking the topology and b) checking Les "algsbratzability™ .

(¥.} A final stap in setting up the problem reasonably 1s to
realize that all the same guastions occur equally well {or a much more
gereral clusy of problems : wviz, that of forming gueotients of varietics
by algebrale aquivalence relations. Only by realizing this can we hope
to find simple encugh examples to study first s¢ as to gt the right

feeling, Especially, the hard equivalence relaticns are Ing non-cormnpact

pne's ; and in the case of moduli, this cccuare principally in [orming
'%"-r" { Projective equivalence of ¥'a in B }

1,8, in forming an orbit space by FGL (o} .

:” Present State of the Theory

very good (i} apalogous prablem in classifying vector bundles ¢n a lixed curve
pretty goodliil modali of curves (canonically polazized)
half good (Ui} moduli of polarized abelinn variaties

ne geod  [iv) meduli of surfaces of gengral type



Jﬂ An Expm gle

Rather than aralyze an actual meduli probletn, I want to take ane
of the simpleat nan-trivial orbit apace problems, in which all the

fentareq of the conjectured results ocour |

O = POL{l} aecting on ]:*E"“L y where IF;_t = nm aymmetrie product
of IFI, i,e. POLIL} acting on theret of T=-¢ycles of
degres n
{= theary of binary quantigae) .

a) jump phenomennon

look 5t IF'E;"PGI..I:IJ . There are 2 orbits : {P+0 |P# o)
and {2P} . Therefore, get 2pts, x,y where x is open

but not clased, y is cloaed byt not cpen ;

This occurg in all medull problems, and one always must
exclude some poiaks Lo avoid this,

Iy JZF"I.1 » exclude the O-gycles
kF + [n-k} Ot

whose iaptrogy group is infinite,

b} further non- eeparation

take n = &
graup A Eroup B
—_ —

ek i generic cycla,



Let all points in group A come together ; you get in the lmit:

Ft o ragp B
() * .
3

But suppo=e, a8 group A collapses t¢ o, ¥ou 3pply a dde-pAFaeler
gubgroup Gm =PGL(}) , mpving points away Irom o to f, Then the

following are projactivaly-seguivalent:

A B A B
bt FoTeT aad LT TG

the latter approacnes ;

gEroup A point §
[ME) ——— e
3

But the 0O-cyelen {*] and {*#} are probably not projectlvely equivalent,

¢} the upitary retraction ; 1o avold thesa bad thinga, daline

Ker

o
W = Setof O-cyclem T Pi ¢ #uch that, patting the Pi on the
i=1
CGause sphere, and embedding the Gauwgs gphere in JFL3I Al

:E * 1_.-3 + Iz =1, then the vector surn of the Pi In Es i

(9, 9, 0.



Une checks, if x,y €K, then x, ¥ are aguivalent under PGLI1) if and

only if they are equivalent under the maximal compact subgraoop

Ke S} RIS PGL{L, C}Y = o,
Bt }'1;’ is compact, therefore K,;"K is compact and sepavated. And

_ no paint O oceours in with
K. PGL{1) = {'ﬂ":‘ multiplicity > of2 4 and U 2 accurs
with multiplicity n/2 , theo
g=%1w0ta '},

d) stabillty regtriction : W 'PGL{l) containe a Zariski-open set

na goint @ occure in & with }

Uﬂtabll.': - {ﬁrmultiplinitr > nf2

e Uambleﬂ_‘, has eeparated topology, and is compact if o im odd, It

im alaar a variety by virtue of a general thesrem of mine.

when B {8 even, things are leps clean,

fG

€] BeEmi-atability :

A showed that there was a natural ¢compactification of Ust.ablc
by addiong a sieglé peoint representing the cycles n/2{0+0Q") , I~ Iact,

there is a complete variety ‘-"n » With print o and dizgram of zigchraic

maps:



Uaemi-utable )

U

—_—
Ustahle untahlt G

where

_ {E?LI ne point O occure in fLwith T,

u:ami-ﬂtahle rauitiplicity > n/f2
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Invariants of & groop in an affine riog
by

Magayoghi NAGATA

1. When a gtoup & acte on g ring R inducing a grouwp of auto-
morphisme, then we can speak of Geinwarianta in K . Let us denstie the
st of O-invariaote in B hy I':.{R:I + Toar particalar interest llee Ia the
cape where R 1g a finitely generated commutative ring over a fleid X
and the action of G on R is such that i} the automorphieme ara

K-isomorphisms and 2} & % K is a finlte K-module for EVETy

g EG
f ER . In this cage, let f‘l, P f'nr be a get of generatore of K over
i Tt 4

and chonee 3 llnearly independeat base HURITVR 21 :EEEGHi] K.
Then R = I"-'[f]. caen iﬂ] and the action of F on R 18 characterized by
the rapregentatlon nf G deflned by the modyle 21 inEH » Jhus , in

F )
arder tn shperve [G{R]l s We may assume that
(11 & ls 2 matrle group contalned in CLin, XKi, and

(2 B = I'q_fl. PR In] and, for every g £, the automerphism

of R deflned by g ia indoced by the linear transfermation

f —=gf £



Uoder the circumetance, the following regsults are known ;

LEMMA 1,1, IGI:R] ie finttely generated U every raticnal
teprosecntatlon of G le completely reducitde or if & ie a finite group,
hente If T has a oarmal aukgroup N of [ipite fndex awch that every
ratlonal representation of N is completely redocible,

In the general cana, thers are pame examples of a palt of G and

R sguch that IGIR]I le not finltely generated,

LEMMA 1,2, I < in the smallaat algabrale met In GL{n, K}
among theee contalning &, then T i & group which acts oo R

11 = I=
natarally and IG:R:I IGIIR]I '

LEMddA 1.3, K &' is & ring containing I, then, under a
natural extenaion of the action ~f G on R E'KK' guch that every
element of ¥' i G-iovariant, we have IGI:R @HK'II = [[R) @KKI .

By wvizrtne of Lemmas 1,2, 1,3 above, we see that, in asking
Iinlte generation nf IG{R] . Tundamental 18 the cage where & is an
algebraic group with universal domaln K . But, suth an acsumption
does net brloag ue any simplictty in oyr treatment, Therefore we shall
not aganme that G is an algebrale groop, buot agewme the assumplitng

(11 and {2} abave,



Furthermore, rational rapresentatione of G whlch wa meet in
our ireabmant are rather special, and therefore 1t s good encugh to
underatand by a rational representation of G a repreaentalion cbtained
in the following manner :

Let R' be the polynpomisl ring ovar K in indeterminatea

]
X yaeedX . Thon G acte oA R ae defined by

J'E! —_ ]{1 for sach g €G,

-+

-+

- - L J -+

x
o n

b

*
Let M and N ha G-atable finite K-modales contained in B such
that W& M, M/N definvs a ratlonal repreeentation of G, Rational

repreaentations we ahall meet with la this paper are thoga of thia typa.

2. We ecall G a reductive group U avery ratlonal repregsentaton

of & is ¢completely redocible, It i koown that

LEMMA 2,1, H G is an algebralc group, then {i} o the

charpeteristic zero case, the radactivity ts eguivalent to the condition

that the radical is a torus and (ii) in the case of charactezrietic p#0,

the reductvity ls agquivalant to the conditlen that the copnected



vomponent . of the ldeatity of & is 2 torus and furthermore the index

¢
G: Q) s prime to p .

Thas the class of reductive groups ie not very small in the
tharactariafic zern case, but s very emall in the posidve characterietlc
cage, Thus, in view of the known counter -sxample to the L4 ~-th problem
of Hilbert, the followipng consequence of Lamma 11 s rathar gatls-

factory in the characteristic zero case and s very uwneatisfactory In

the poeitive characteristic case ;

LEMMA 2.2, In the characteristic zero case, IG{R:I is finitely
generatad if the radical of the smallest algebraic grovp G in GLia, K)
ameng these containing < 1s a torue : in the positive characterintc
case, IG{R} ie finitely generatad if the connected component of the

identlity of G isa torua,

J. Let us denote by Pm from now on the pelynomial ring over

K lo o indeterminates X_, ..., X .
i m

et o be a ratienal representation of G . I p{G)= GLim, K},

then we define an action of & on Pm by

3{1\—} P e r'l"i] Y for every g €0 .

L [

\x %
Im m



We call G a pemi-reductive group if the following is true :

I pip arationzl representation of G which delines xn action on
F'm im being such that p[G) = GLim, Kj} such that i) Eif. ExiH 13
G-atakle and [ii) Kl modylo =i 5 Exiﬂ ig C-invariant, then there ig
a pelynomial F € Fm which is G-lnvariant, monic in :{1 end of
poaitive degree o }{1 -

Jince the action of G preserves the degree of every homogenedus
form,. the condition en F above may be replaced by the condition to be
A G-invariant homogeneous form of positive degree which ia monlc in
L

For algebraic linear groups, it was conjectured by D, Mumiord

that il the radical ls a torus then the group is soml-redective. Aag will
be shown below, thip conjecture is equivalent of the following, which we
like to call Mumiord Conjectare :

Mormiord Conjecture. If QO is a connected semi-simple algebraic
linear group, then G iz semi-reductive.

To the writer's knowledge, Mumicrd Conjecture hae been solved
ofily In a very apecial case where characteriastic 1g 2 gnd O = Z..052, K},

it wars d9ne by Mr, Tadao Oda,

The purpose of the present note is o show



MAIN THEQREM, IG{R]- ia Finitely gencrated if G is semi-
reductive,

Lat ug indicate here how to prova the equivalerce ~f Mumferd
conjectore with the case of an algebraic group whiuwe radcal 15 a tores,

The key lernma is :

LEMMA 3,1, Let M be a normal subgmoup of G, If both T and
GfN are semi-reductive, then G is algo eemi-reductive.

Frool; Let @ be a rationz] reprezenration of G an atated in the
definitinn of semi-reductivity , Then the restriction g' ol 0 on N ia

af the same typa, whence thers in a homogensaus form F = P, of

il

positive degree such that F is monic in X, ard M-twvariant el

1 -

the action of N defined by @' . Comctior il dieandde Mn S }oaa 2

The action of G on M iz really an action ol G/, Let M# be

L
M NE L‘{_Fm , aid let F - Fa be a base of M . Then, since

ix 2 IR

* .
M=FK+M , since any power of :{1 im G-invariant moculs
ir2 }I.’.il'-"'m ; the rami-¢ednctivity of G,."rw implies the gxict.rre of g
"
homogeneous form F inm F, Fl" PR, Fu of positive d-z:+. =vrh that

| ]
{1} it is moole ln F and {#)] it is G-lpvariant, F 18 2 homagshecus

farm of positive degree in X,, ..., X _ . Since F, €k X P aud

in semi-redyctive,



Mow the equivalence sald above s proved azpily by the fact that

fipite groups and tori are 21l seml-reductive,

4, Before proving our main thesrem, we liks to give a rematk on
our formulation of Mumford Cogjecture. Mumifcord's formulation was
etated in projective space, MNamaly, if P is a raticpal representation
of G and if RG] = GLim, K}, theaanactioned G om :F"m ia
deflined, which deflaes an action of G on the projeciive gpace Em-i
of dirnension m=-1 . The condition proposed by Mumford s that if a

m-1 ta G-invariant, then there ia a G-atable

peint P £5
. =1 .
bypersurface in § which doce not go through P,
H this condition is statad lo Pm . then, rhocelng coordinatas of
P tobe (1,0, ,,,, 0}, it can be gtated ap follows ;
It :iaz XK is G-stable {(bence, X, medule :iiaxiﬁ is

G-pemi-invarlant) , theo there ie a G-semi-tavariant homegeneoun [orm

F which s monle in Il and of poaitive dagree,

PROPOSITION 4,1, If the above condition is satisfied by G, then
{t fa seml-reductive,

Proof; Let g ba ae in the definition of memi-reductivity, Then
there js & homogeneous form F ap io the above condition. Since J[l

is invartant modulo zi.? - XK under the action of G, any power of



J{l in G-invarlant moduls the ideal genarated by Ei} ExiE « Therefore

that F isp G-gemi-invariant implies that F is Cr-invariant.

The ¢ehiarme of Propoaltion 4.1 ia aleo true, and wae proved hy
Mr. M. Mivanishi, The ptroof will ba given at the end of this articls as

an appendix,

£, A redoctl™e group is obvlously a semi-reductive group, hence
our mait thastem includes the corresponding result for reductive groups,
As for tha proof, that special case i rmuch simpler than the sami-
teductive caae, In order to compara these caaen, let us begln with
glance at the reductive case.

The following two are Key lémmas 0 prave our main theorem for

reductiva gronpe :

LEMMA 5,1, A, Let i be 2 G-homemorphisam [rom R onte

aring R', If & is reductive, then 1.{R") = # (I~{R]} .

LEMMA 5.8, A, If O 18 reduckive, then lor any hl’ .”,hs
in IGIIR:I . we have [ Ei h!. R] F"'E_RI = Eihluﬂm” .
Narnely, the Hrat lemma enables ua bo asgame that fl' .”.fn Are

algebraically independant. Then the pecond lemma showg that IG[RJ

is A graded Noetherian ring, and we see eanlly [hat IG{R]I 1§ finitely



generated, by virtue of a well knewsn lemmma which will be recalied later,

For aemi-reductive groups, we hava the following adaptiona of the

above lemman 3

LEMMA 5.1, B, With the same ootatlons as above, f G s
peml-reductive, then, for every element x of IG{R'J , there 1o a power
t
x ¢f x such that :I'.t £4 {IG{R}] .  Gonmequently, IG{R_'} ie integral

ovar # I[IG{R]I} in this case,

LEMMA 5.2. B, Assuma that @& is gemi-redoctive. Then for

any b., ausy ha 'EIG[H] , every alement of {Elhiﬂ} nIG{R]I ig nil-

1
poient modulo EihiﬂG[RH .

Froof of Lemnina 5,1, B : Let y he an element of B such that

Alyl =x . Set M= EEEG?EI{, =8 Sp, N =Mfa., i x=0,
then the apsertion ls obvions, and we assume that x¢ 0, 5lace x is
G-lovariant, we have _’,E =y € N for every g €G ., Therefore,

latting ¥yo »-va ¥ bea linearly independent base of N, we aee thet,
by virtue of the semil-reductlvity of G, thers ig a G-invariant element
F ool f'-'{n LATIEEEY 'fmJ which I8 moole and of positive degree, say t,
in ¥y, and homaogenzoua in y, ¥yo wmen ¥ v Then

£(F)=x'&f U RN} . This completes the proof of Lemma 5, 1. B,
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Froof of Lemma 5. 2. B, We shaill make wae of indgction aTgument
on & withont fixing R . Let B be the natural homomorphism from
R onts H,r'hIR « Lel x beaparhitrary eltment of | E‘i hiR] i"IlE:RII '
Thao - [x} is in Il}z,ﬁl_hll B{R) Ny 1.(R)} , whence by induciion on
& , we gee that there t:a aatural numbar t sach that B :xl} le in
Eiz 5 [ l_hijlc[ﬁ (R)) . This rmeans that z' = Iithi with Fl ER
and Fz* “ne F! Eﬁ'i{qu.ﬂ {B}) . By Lemma 5.}.B, thereisa
natural aumber u such that # {Fau ] £8 {IG{R” . Then, congidering
:tu inatead of ::t ;) WE may apsurne that Fa S IG{R] (if a>1}), Then
xt - b F, E{Eiiu-lhiﬂ} I"I-E{Rl , and x - hﬂF,, in nilpotent modulo
Ei. < a-jiH BN, which impliee the assartion, Therefore we have
only to prove the case where a = 1, Inthia cage, x = h x' with x' €R

!

and x' is G=invariant modujs 0: b R + Let & ke the natural

1
hotnemorphism R —= R/0 : th:l « Then &(x'] EIG[ ¢ [R)) , whence
there ie a patural number t auch that & tx’tj Eg {IG{RH o Leet

T 'EIG[R} _l:re puch that o{z) = J{:'t} . Then

xt = hlt:lf.'t = hltn EhluﬂﬁRH « This cornpletes the proof of Lamma
5.2.B.

We recall here the lemma on gladed Noetherian ring refered

Akove :
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LEMMA 5, 3. Asaume that a ving A I8 such that (i} {1 is the
direct sum of submodulea An, P‘l' “e oy An' +1a  Bod (1) Ai"q"j EAHJ

for gvery poaslble patr (1,31, I the Ldeal El. o lﬂ'i hans a finite baain,

then A ie finitely generated over Aﬂ a

6, Let 5§ be the homomorphism from P onto R euth that
B l.‘.-:i:l = Ii for every 1 and let (iE:} be the karcel of f. We shal} prove
hera the main theorem in the case where i:_:h.::llﬂ a bomogenecun ideal.
Sinee Pn is NMoetherian, we can cee jnducton argument on the largencas
of [ﬁ - Thus we arsume that if -;i_tﬂil a G-stable homogenecus ideal of

Pn atd contaios E"meperlﬂ,-, than IG[Pnﬁ{]lé:fij i# Minltely geroeratead ,

LEMMA b.1, Under the circumstance, if 'h' i a graded ideal

£0 of R, thea IG[I-‘-‘.l,.-"[@I'IIE{R:} is finitely generated,
Praof: By assumption, IG{R.rtﬁ} iw lotagral ovar IG{R},-"@HIG{RH .

Thase bwa facts show Lhe rasult,

Therefore, by virtus of Lemma 5, 3, if there 1s sych an ideal {E}
{not containipg 1} as above so that E_:IHIG[R:I hae a flnite baple, then we
vee the flnite generation of L. {RY .,

Aa a particoalar case, we have the cane of an integral domain,
Namely lf b is & hornogenecous element of IG[R} aod if R 1la an integral
domain, then hR I"IlGl[R] = hIIIG{RjJ . The same reasoning is applied
if thére in 3 homogenecus element h of pasitive degree which ia not

A zarn divigor.



-]12=

Naxt we congider the cape where R im not an integral domain.
let b¥ 9 be a homogeneous element of L (R} of positive degrae, 3ot
(@)= 0 : hR. If /a;= 0, then we finished already, and wa nasume that (a'#0 .
Then , by Lemma B,1, both IG{R}f[hR ﬂIG{R}I atid IG[ij@nlﬂiFL]l
are finitely geoerated. Therefore there ls a finitely generated gubring A
of IG{H.:I such that IG{R].-’{hR I"IIG[H.:I} = Af(RR MA] armd such that
IG{R}I[’EJI'IIG{RJ} = AfE:NA) , Sioce IG[H.-’@“} 1a a [nite module over

Af{4:NA) , there are alements Crr aear € of E such that IE{H.fgrﬂ ls

t

gencrated by these ¢, module a as an ASEMA)-module. We like to

i

shoew that IGI{R]I iz then generatad by nih over A, Since cl modulo

‘a- are G-lovariant, we see that eh are G-invariant, Cenversely, lat
x be any element of IG{RI » Then there 1a an element & of A such
that x =a €hR, Let r be such that x - a = ht {r €R), Sloce hr in
G-invariant, we see that r moduale & ie G-invariant, whence there is

an element b of ZAc, suchthat r - b &), Then br = hb €afhe,,... .hﬂt}

thie compileters the prool, provided that the kernel ;"_i_-;q’f of § la homogeneous.

T. Now we consider the general case., We adppt the notatlon ia § &
withost assuming that k' is homogeneaous, The induction argument is
alea adapted, considering all Ci-atable ideals of Pﬂ . Then we need &
different preof only in the cans where IG'I:R] is &n integral demain ifor,

othetwiae, take at element h of IG{R.] which lg a zaro=-diviaor in
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IGtR} + and adapt the proof just abova) . In this case, IG{RI im

integral over IG'IF:_IU{@ nIG{F:n” « Since the resuitin 56 includes the
casg where ke 0, we pee that Il:i-{Pn:l ie finitely generated, hence the
integral dependence implies that IG{R} in finitely generated. Thas the

proof of the main theorem ls completed,



AFPPENDIX
by Masayoshi Mlyaniahl

We ehall prove here the converse aof Propoaition 4.1 above.

Agoaume that a rational representation o of & is of tha form

: ax

o #)
where t is of dagree |, Lat m be the degrea of p, Then we
consider a reprasentation 7= tE, E being the unlt matrix of degree m .
Then T (g} is in the center of GL{m, K} for every g% G, and
thexalora P'.I"_l givea a rationa] represzentation of & (net in the rastricted
fense abeve, but o the asval memse) . By the semi-raductlvity of G,
there ia a homogeneows form F in P'm of pomitive degree such that it
ig monic in x and G-lovatriant under the a<tion of & defined by

-1
Wt . Then F is pemi-invariant ander the action of & deflned by &.

Thia proves the converse of Proposition 4.1,



TRANSFORMATION SPACES, JUOTIENT SFPACES,

AND SOME CLASSIFICATION PROBLEMS.

Maxwell Bosanlicht

Yor simplicity let ue restrict our atteotlen ta varietes in the
classlcal aenpe. If ¥ io a variety amd A c ¥V x V is an equivalence

relaticn armmong the pojnts of V , by a guotlent variety 1s meant a pair

(V/B,p) , whera V/R laavarletyand p: ¥ —» V/R 1s a sur-
jactive morphierm such that two polots of ¥V have the aame image under
p if and only if thay are H-sguivalent and such that, for any v g ¥V,
it £ ie a ratlonal fuanction on ¥ that ls defined at v and ia R-
invariant (i.e., constant on Reaguivalenca classes) then £ ia the
cormpadition of a rational functdon on ¥V /R that ie deflned at px  and the
map p [l, expoaé 8], H V/R existe, it clearly satisfies a univarsal
mapping property for Reiovariant morphlsms of ¥V and, in particular,
Iz eesentially unlque. Howevar ¥/R need not exiat: omo nECHERATY
conpditicn for the sxdatenca of ¥R 1a that B he g clogad auhae: of
Y o« ¥,

In what follows, we congider only the caae where V is a frana-

farmatlon space for an algebrale graup O and

B ={twmagvil vev,geal

is the equivalence relation whose egquivalence clasacs are the G-orbita

on ¥i In thie case it i cestomary to weite V/G iostesd of V/R



(1f this exdatsl. I Y/G exiats, the map p: ¥V —= VY/0 ia auto-
matically separabis, for the function Held on ¥ /G ia the gubflald of

the fupcHon field on ¥V coneleting of all elements left fixed by a group of
autormnarphisms. In general, the graph of the cperatipa of G om V iz a
cloged subamt af G % ¥ % ¥ po that R , the projecdon of this graph
on ¥V z ¥V, is alwayns conatructble. Tha isotropy groups (stability
groups] of the points of ¥ cap be obtained by intarsectonaon G 2 VW « V,
henca have the obwigue semicantinuity proparty that the dimenaion of the
isoctropy subgroup ef v € ¥V is constant for v on a certain G-lovariaat
apon eubset of V , and greater then thie conskant on the complamentary
cleaed subeet, Any giver peint of V haa an orbit and an lsotropy group
the sumn of whose gimensicns igdim G, so that all arbles on a cartalin
G-invariant dense open subget of ¥V have the eame dimension, aad all
othar orbits have atrictly amaller dimenston, I it should hnppan. that all
orkita have the rame dimension, then the fact that tha clogure of an orbit
i alse C-ilnvariant would imply that all orbita are cloead, Howewer zll
orbita may be cloged without sguidimenslonality helding; e.g., # G is
vwrpstent and Y afflne, crbits need not have the aame dimeoslen but

they are always closed [3] ., If R is closed then the aguation
¥ *Gv 3 R 1 (v % V)

irnplias that all orblts on a dense open  Geinvarlant subset of ¥V have

condtant dimenslon, with other orbdts having larger dimenalan; thua



if B ierclosed, in particular U V/C axigts, all orkits are closad
an¢ have egual ditceneion.

If 2 quotlent p: V ~ V/G exists, a sumber of other pleasant
<onsequencap follow without any further assumpton [3]. In this caaee
the map p is cpen, so that V/GC has the eapected quotient topology.

I ¥' C¥ is open and Geinvariant then the pubset Vi/G of ¥/G isa
quotlent vardety of V', I W is any varisty and & cperates op ¥V X W
by tha cule giv,wl = (gv,wl, then (V¥ % W)/G exlsts pnd aquals

{¥/G) » W, There is not much of a theory on Helde of definitden, for

if G and ¥V are deflned over the HAeld k¥ and if V/G is quasi-
prejuctive | a condifion that can be relaxed eomewkat), then V/G and

P may both be chosen ac ae to be defined over k.,

The eadatence of & quotient ¥/G turns out to be largely a loeal
problem, for i V & tovered by Geiovariant cpen aubiets {‘u"i} such
that sach "u'ifG exinte, then V/G exiats if and cnly if R im clopad,
But the closure af R does ot tnsure the exiatence of ¥ /G, as an axample
of Nagata ahowe [2} . Good locat criteria for the existence of gquotents
ar& rnuch 2o be deaired, The most geanaral result in this directon 15 dua
to Swahadri [B], The most important case of Seshrdri'a rasult in when
V ia a principal transformation variety for &, i.e,, when R ia closad,
ali isotropy groupe are points, and the rmap R —>» O glvan by
{vi gvh2i—» g {8 a morphism, and it aays that if V 1is sormal then

each of ite points has a2 G-invariant open nelghborbood which haw 2 finite



galels covering which ia aleo a princlpal space for G and in additon
admits a quotlent by G {so that tha exlstence of V/G depends locally on
the exdasthnes of guoHents Loy Aulte groups oparating on cther varietes),
Seohadri bas slec mhown [9] that if V is a normal priecipal epace for an
aballan variety & then V/G always existe,
As might be expeceed, the simplast generzal resule on the exiatence
of quotient varistles ia alac gna of the most vaeful, It is o the affact that
for any transformation apace V for the algebrale group G thare exists
2 donaa CG-invarlant opea saubset V' of ¥ asuch that ¥'/G existe [6] ,
The proof consiats in first construcng V/G and p biradonally, by
means of the Geinvarianot raticnal functions on ¥V, and then cutting off
closad subeeis that cause trowhle, lo ceae B ia closged, 1t 18 immediats
that thers sxiats & unique maximal G-invarian: open subset V' of V
auch that ¥'/35 axiate. I thore axiesr sulficiently many Geputomorphisms
af ¥ then V/G will axdst, a reault which produces a very sasy proof
of the exdatence of coset spaces for aubgroups of groupa, togather with
all the desired structure and ratosnality propertiea of these quotlenta [4] .
There are n pumber of important results stating that if V  1a affine
and certaic other conditions hold then V/0 exieta and io aiso affine. In
puch cages the coardipata ring on VAT muat consist of all G-invariant
functions io the coordinate ring of V , which glves the starting point of
ali the procfs, and practenily the whole proof io the case where G ia

finite [ 7, pp. 57 - 5%], {If C is finits thera is an immedists



generalization glving the existence of V/G whera ¥ ia not affine, but
each arbit on It 18 contained in an affine open subset [7] ; ao esample

of Magata for G = Z/¢Z shows that this rasult may fall without the last
comdition,} The reeult holds whenever G ia a torus and orbits are equl-
dimansional [3], and slas if G ia redoctiva and all orbite are closed,
at leaat in the case of charactaristic rerc {Borel. Iwabori, Mumicrd,
Nagatz).

There are interesting problema connected with the clansificatlon of
trangformation spaces for zlgebraic groups, eveo lo the apacial case
where the tranaformation space ip homogansous or prehonogensoua
(i.¢., bas a denas homogepecus gubeet] and the group 1s connected and
golvakia, If WV ia hernogenaows and G 1a commutative then, fAxing a
polatef ¥, V¥ im glmply an algebraic group that 1s a bomemerphic
image of G, while if G is connected, asclvable and linear, then V ia
isomorphic (am an algebraic aet) to a product of afflne linea and afflue lices
with gingle polnte deletad [5]. In the laat case, !f 3 and ¥V are defined
over a Seld k esuch that G 18 k-solvable (meaning, roughly, that < hae
a2 composition serles over k with all guotlent groups isomorphic to the
additive or mulbplicativa group in one varizble), than this product
decompositlon of V cao be done rationally over k. In the P75 9296
whara dim G 2 1| tha raault, aven without the ratonality part, leads to
an easy proof that for any quodent variaty ¥ — Y/G |, where G ia

connactad, scivable ; aod Unoear, thare axsts m ratlonal sroas-secton



Y/ G — V¥,

The problem of slasalfying all compilste prehomogenecus apacea for
connectad unipotent groonpse derdivag ita main interest from the fact that
if B iz a Borel subgroup of a connecied Ynear algabrajc group G than
G/B ia prahomogenecus far Bu [ard furthermoze there are ooly a fAnlte
number of orbits, each isomorphic to an affina gpacal, In the pame way
the operation of g maximal torue T of G on G/5 leads cne to consider
in {ull genarality projactive varietles ¥V that are transformation spaces
for a torus T , theorerna which enable ane to read off & good deal of tha
clasgiflcation theory of Bnear algebraic groupe |1, exposé 10 #,], For
axgmple, one can prove aasily that the fixed points for T on V are at
lempat dim V + ] in oumnber and all of ¥V is left fixed by a subtorus of
T eof codimension < dim ¥V, which two facts tagethar almoat imply that

a wemisimple finear algebraic group 1a generated by its 3-dimensional

aimple subgroups.,
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OMN THE THECRY OF COMPACTIFICATIONS

Jun-Ichi Ipuzsa

Thia ta the first part of our lacture, "'Co the Siegel moduiar
variety', aud it contains an outline of a proof of the fact that campactificatica
oi Satake's typa 1 have, under certain general conditions, no finita
non-siogular soverings locally at the boundary pointa. This fact was
obgarved in the case of the compactifications of the Slegel npper-hali
plioe of genua two [5, 2i. 7]. However, the proof wa had in that cane
was too special, Following a suggeston piven to us by Zariski, with the
nae of our rerults on "thebta.-constanta™ we then exarnined the compactificatio:
of the Sizgel uvpper-half plana of arbitrary ganus and found tha under-lying
mechaniam, which wa fird convenient to oxpialn using the thoory of
"Ilogel domaline of the third ad" developed by Pyatetskd-Shapiroe i1a] .
e ahall, therefore, start summarlzing Pyatetskd-Shaplre's results

{makdnp 3 minor correcton} to increase the readabdlity,

1, Lat T be a bounded domain, 1.e.,; s oon-ampty bounded
connectad opan aubset of a complex vector spece, or at least (complax)

analytcally jeomorphic to a bounded domaln, and let U, 2 be complex

1. Thip means the compactifications of quotlent varleties of bounded
aymmetric domaina {hy certain properly dscontinuous groups of analytic
auternarphlame) which are obtalned by "adding"' guotient vazietles of soma
beundary components {using Cartan's theorem on the prolongadsn of normal
apalytic spocas [2] ), A most geoaral theory of compacfifications
{of Satake's type) hae rocontly beon obtained by Bafily and Borel,
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vector spacee all three of findte dimenaions, Let B be a "real enbespace” of

Z,i,a,, & pubspaca of £ when Z ip considered as a vector apace over
B , puch that 2 apllés intoa directsurmnof B and B : Z = R+ IR,

B NABR = 0. I z isawvecter la 2 , It can ba writtan unlquely in the
foyrm Helz} + iIm(z) with Relz), Im(z] in B . We shall assumea that

a non-pmpty open convex cone O which centiing no entire straight line

ia given in R. Thia means that, with reepect o a suitzble affine coordinata
system in R, C is containad in the first qguadeant, ‘Ae ghall aasurmne that,
for every podnt t of T, & "guasl-hermidao form" Lt t U x U —r E

ia plven, Thia means that Ltl_'u,_,v} ig € -lingar In ¥, K -linaarin v and
[u,v] = HIMHL‘{“t v] - Lth’- ul))

iareal”, i,2,, E-wvalued, We then conpider the set 5 of points in the

product Z * U 2 T with eoordinates {z,u.t] satiafylog
Imiz) - Rell (u.ul) € G.

Wea ghall irnposa furthar condilons, Wwe réquire Arst that tha mapplng

U % T —= R pgiven by (u,t] —= RB{Lt[u,u,]] 18 eontdnucus. Thin
impliea that 5 jis anopen scbect of Z X U X T, We than requize that S
ig amalytically lsomorphic to a bounded domaln, Tha third condiden 1a moera
involved, We conaider the set 7} of analytic mappipga b: T —= U such
that the mapping T —» Z defiood by t — Lt{'u.b{t].'l ig alpo analytle
for every u in U, This implies that the mappleg T * T — £ deflnad
by (tt) —> L/(bft') ,ble) ) 1eanalyric, Atany sote, itis clear that yis

forma a vactor space ever R . Wo roguirs that 7 and U have tha same



A

dimenalan aver B . Ao it was ehown by Pyatetekd-Shaplro, this means that,

i1 tuiu an artdtrary pednt of T, the mapping . — U dafinad by

b — b'l'.tu] ig an lsomorphigm over IR . If these conditions are sabiefied,

we gay that £ is a Siegel demain (of the third kind} over T,

Suppose that 5 fe 3 Siegel domadn ovar T . Then, for [b,a} in

W R, the mapping {b,a} : 5 —% 5 deflnad by
{Gaust) —> (2 + 2 + iLt[3u+ wlt), bitd) , w4+ bith, )

1s an analytie automorphism of 5, Thege automorphiamg of 5 lofmn a2 sub-

group G of the group G of all apalytic autermerphioma of 3. Tha law of

3 &

compositon in G, is given by

3

(b,al{b'ca’ = b+ L', a +a' + Zpe)l.

We note , here, that the mapplag [bab'] s T — 2 can be identified with an
elament of R , bacauas it is analytc and H-wvalued, hence constant, We alsa
make the following obaarvatoen, Conaidar tha Bher over t, say St o ol

the flbezing & —= T defined by {z,wt] —* t . Considar further the

fibaring EI: —= C definad by {=z,w,t}) == Im(z) -~ Rul:l-t[u. 1)) . This fAber-
ing has a glebal crosa«saction definad by r —% {ir, 0, t} ard the Aber hondle
Et = C 15 ipemorphic to the product-bundia ‘33 ¥ & —-—=> G inan sbvicon

way, Since GS operates oo mach flbar ap left translattonn, it 1s called the

group of trangladona in 5, In the folloewdng, we shall asgume that the

ghew-gymmetric Wlnear form [ b'] la nen-degenarate. It is the same thing

t agpume that tha cenker G‘! of 53 19 the gubgroup deflned by & = [,
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This assumpHon 16 alwaye satisfiad in the applicationa, Slnce G'; ig ipomorphi
¢ B 3aa a —= {0,al, 1t will ba identifled with B. Then we have anlsor
morphlem GafH ~ T{ induced from {b,a} —* b, We repall that, ar sach

point t of T, we bave an leamorphiem Y.~ U aver R defined by

0
b — I:n{l:n]. If 0 iga subgroup of GE’ we shall denota ite image in U
undar the carmnpoaite mapping aimply hy ﬂ[tﬂ} .

Wa shall alno define Gl and G Consider the group of analytic

3'

automorphiama of § of the following form
(z,u,t} — [Az + au,t), Bitju + it} glth .,

in which g repressnts anmalytic automeorphisme of T. They [orm a aub-

group of G, . and thisie G Ag for G,, itis the normal subgroup of G

1" 1"
defined hy g = 1d. It ie clear thai Gﬂ ’ Gl. awe form a decreaaing aequance.
Using a classical tormmloelogy in the theory of Fughalan groupa, GI ig called

the group of parabolic transforrnadons in 5. A complete description of GE

will now be given, In general, if L is an arbitlrary quasi-hermitian form,
1t can be expressed unigualy 3¢ & gum of a hermitan form and a saymmetric

form. For Instanee, the hermidan part H of L ie given by
H{u,v) = {1/28{Llin, vl -Llu, dvl),

We shall dancte the hermitian part of I..t by Ht . This being remarked, if
Zowt] — [fz + alut), Bibe + bit), g

is an arthitrary alamant of G, it dacomposed unlgualy into a product

Z
(b,aly of {b,a} and ¥ with ¥ given expilcitly as



5‘
(% vt} —= (Az - mLt{uru} + 1]-'1:(5[':}“- Bitjul}, Blutu, £},

in which &, Bt} , ®{r) have the game meaning a8 in the original elamant of

G We note that hecessary and sufficient conditlons for a tranaioemabion

z L]
like that of ¥ to define an analytic awtomorphiam of 5 are

{11 A 1B an element of GL{2) satiefying AC = C,

{(2) B : T — GLI(Ul ie analyHc.

(3 AHlu,u} = H(B{thu, Bitlal for all fu,td in U = T,
Furthermore, slements like ¥ form a subgroup {ﬂ- (34 Eiz, and it lg 1someorph
to the group of paire (4, B} satisfying the abowe three conditiona, In
Pyatataki-Shapiro, the exact form of ¥ and the crucial conditon (3} are
gtated incorrectly, At zny tate, GJ ia the normal subgroup of Gz defined

By A = id., B = id,, and w¢ have & penddirect product decompopition

GE = GE' {¥} . Mgreover, the law of composition in Gz is doacribed as

{brap)(p a'Kis, ey} = {BbY, Aal + 4{b,Bbh .

2. Uslng the same notations as in the previcue aectinn, we shall intro«
duce » Hausllorff topelogy inthe unden § = 5 U T sc that 5 becornés an

open subeet of £, We hava only to assign neighborhoods to each point of T .
Lot tg be a point of T, We take a neighborhoocd ¥V of 5 in T
and a wactar r of B . We then consider tha subaet S{¥,r} of 5 deflned by

Irmnia) -Ra(Lt[u.uH - r EC, £ EY

—

and take the nfan 5 (V. #) = S{V,r) U V as a neighborhoodof ¢, 4n 5,

It is easy ko verify that wa have a topology in 5 with the required propardes,

We observe that G, operates on 5 ag & group of homeomorphisme. In

2



Eadct we hawve

i, aly.5{V,.r] = 5(¥,Ar),

It is aleo lmmmediate to introduce the atructure of a normal ﬂﬂgﬂd spaca in 3
which inducas on 5 the given atructura of the cormplex analytc manifold,

Now, every elament of G, givas rime to an analytic sutomorphism of

1
T as t > git). In thie way Gr"“z can ba identfiad with a subproup of
the gruup ~f apalytie sutsmocphipma of T . Lot TD be a subgroup of GIEI
which 1 properiy discontinuons on S5, We ghall assume that T ia ”rﬂ- rationa!'
If wa put I‘k = Tu g Gk for k = 1,2,... this means that the guotiant Epac.
Gi"'lrrj is compact and that the guotlent group 'J."lfl"a la properly dacontnucus
on T, Since we do not know whether 1t 19 a consequence of not, we ghail
aspume, In additdon, that if we take ¥ sufflciontly amall and r sefficienty
"large", elements & af T with the property @+5(V,r) nsiv,e} 7 ¢
are all contained in I'“] « We loow that this assurnption i always satisfled
if 5 ia obtained from @ bounded aymmetrie domals and from ita boundary
compenent, This being remarked, wa take a point t of T which is not
a fimed point of 1"1 ,n"'l"2 ¢ and investigate the coempacHiication of the quotisnt
variety of 5 by T.u. + which we ghall denste aimply by EJTD + around the
image point of ':1:I .
In ganeral, lot [ be a diacrete subgroup of li]3 mueh that the quetient
BpACE ijﬁ {8 compact, It is the same thing to assume that Gafﬂ' has a

finite voluma, We note that tha bi-invariant measure o &, is the product

3

maasura of the ardlnary measures in %4 and R. Atany rate, if 7 i3 such

B group . thea [ N A ie discrete in B aond the image P{t) of fidn U in
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discrete in U for every t both with cornpact quotient groups, Therefore,
if f is an analyie function in S[V.r) and ifitis invariaot by EEN R, L.,

by tha cparations of &1 0 R , iradmits a Fourier expanaion

flaw) = } 8 (ut) olpish .

°
lnwhich p : &€ —» L is & -linear and takes integer valuas oo 30 R,

Actusdly, the sariea 1 abaclutely and unlformly convergent io every compact
aubeet of 5(V,r}, and the coafficients define analytic functions on U X V,
Furthermore, in case { is invariant by [}, each E'p satipfler the

functonzl aquation
Eﬂ{u + bitl, t] = el-pia+ iLtIEu + bh'l.h{tu'r]']}ﬂp fu, £}

for all [h,a) in {il. Therefore, for eackh t in ¥, the funcHon

u —= 9 {u,ﬂ 18 2 theta-functon (o avJacobi function'} on U reladve to
ey, In Earﬁcular ﬂﬂ[u,t] depands only on t. The Fourier expansion of

g =3 flz,u,t] i called the Fourler -Jacohl eorias of § by

Pyatetski-Shapivo. It la sasy to determine the Riemann form  of Ep y TOTE

precigsely of u —* Hp{u. £} . in the sense of Weil [12] . In fact, it ia simply
the hermitian pare of the quasi-hermitdan foem 2i. {-p {iLt{lu, vl . Thera-
foxe the Riemann form of @ s 4p{H {u,.vl} , 3od its imagipary partis
4pliv.v]) . We nota that P dpifu, vi*is

integer valued on (Mt ¥ [t} , In fzct p  takes integer waluseon RN R
and , with bit}, b9s) in D) . 4fr.b'] dedn & 1 R bacaose of the last
formula in dection 1, On the other hand, since the Fiamann form has to be
posldve semindafinite, the summation In the Fourter-Jacobl seriee of £ 1a

rastricted by
plH (o)) > O



B

fer all u In U, Thisin general imples that p i non-negative on C. On
the other hand, if { is bounded in S{V.r) aod if g ¥ 0 appears in the
Fourter-Jacobhi sariea of {, then 2 is positve on T, [(The converes ia
alpe troe when V is relatively comwpact with respect to T.} Thereforas,
by reatrictng to boynded functione if necespary. wo can agoums in the
follovtiog thet this condition 1e satisfied,

Golng back to the situation we bad before, we apply the above conaldera
ationto {1 = T3 taking m8 ¥V ao open neighborhood of tﬂl' Then a formula
at the end of SecHon 1 shows that, tf (b, a)y 1s in Tz. A gvan risa to an
automorphigo of the lattlce 1"4_ and Bit) glves riss to en zutcinorphlam of
the lattice Tﬂm . Therefore, if we take an affne coordinate system, for

Inataece, in R po that I"!I becomaa the lattice of integer polota, A will be

reprosented by an ioteger matrix,

i, The gensral considerations we have made so fay will bacome
exceptionzliy slmple if wa asaume that

() the centar o af GE- 12 opa=dimaneional,

4

1t ia the game thing to assume that B 1a ona-dmonelonal cver B or Z

id one ~dimensional ovar € ., We note that, 1f § §s okdained from an
irreduclble boundad aymmetric domajn of type I, I, I or IV and from iis
highagt dimenalonal boundary component, the conditan {2) iz always

vatlefiad, A ., Boral told us that the sarmo {5 known aleo for tha two axaaptenal
capna of dimenglons 16 and 27, This belog rernarked, if {5} 1s satisfied, we

can identify Z with T sothat R, C, 1"* are reapectively identified with
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B, H+ , £, Than the Fourior-Jacobi seriss will taka the fallowdng form

s
froa ) = ) 8 bastelks) .
k=0

Since  Im{H(u, v} 7 [o, %] 15 nom-degensrate, wa have Ht{u. u) > 0

for u # ¢ . Morsover, the conditdona (1), (3} inSeedon 1 imply that, if
{A,B) comee from an slement {b,aly of '.l"z. we bave A = 1 and B{f) keepn
I-l,t invariant, Therefore Bt} gives rise to an automorphiam of the polarized
abelain variety (} . = U/T,it), the polarization being determined by the
Rismann form J!:Ht[u. ¥} . lo partdoular {E{t]} ir & Andte group {the

structure of which dowa oot depend on t), We shall coneider the simpleet case
agaurning that

() wo have Tz = I'3 .
This means preciacly that we have {B{)} = 1. In this case, if wwiake
V sufflctontdy small end r aulficiently large, the quatiant space
I = 5 (v, 1-},.-"'?3

with the ring of invariaat analytic functions on S(V,r) relative to T, which
is nothing else than the riog of Fourier-Jacobi saried, deacribes the znalytie
structure of the compactification of 5/ T, arcund t, inthe senge it gives
n naighborhood of the image peint of £, in the sampactifization together with

tho ring of analytle functions oz it, Thia ia because t, ia not a fismd point

af !-"1..1"T‘z . Conaidesr, on the other hand, an open subset W of the product

T * U XV with coordinates {w,u,t} saHafying

abaiw] < axp(-ii{ﬂe[l-t[u.uﬂ + rhl.



10

whera abefw] means the absolute vaine of w, Then (k,a) glves riee 1o

an analytle sutomorphlsm of W ae
(wryu, k) —> tﬂtﬂ- + iLt{z'ﬂ- + hh‘-]l BAtH ) w,u + bt} - 1),

and in this way G, operates on W, We obaserwve that T:i ia precigely the

3
subgroup of G, which operatas trivially an W, and 1"3..:"1" , operates on W

propstly dlscontiumaly and without fixed points, Hence tha quotiant variety
x = =

ip non-aingular, We observe that invariant analytiz functiona in W are
obtained slmply by replacing efz) by w io the Fouriar-Jacod serles {of
invariant snalytc fmetions in 5(V, r) both relative to TE-} . ©m the other

hand, wea nota that tha closed subvaristy W, = (0F XU 2V of £ x0T 2¥ is

W - = LW - M
0 and "n'l"1 ara ataible by 133 and we hawve wl’frz. ¥ Dfrﬂ- oré

prociacly, the gnotlent variaty WGITS is non-singular and it i the closad

containad in W, We shall dencts iks complement In W by W

subvariety of the non-singular variety ZU* defined by w = 0 the
quotient variety 1-*-'1,!"1"3 la the complament of Wﬂij in Y*, Sdrnilarly
wa hawve S[V,r) f T, = ¥ou ¥, Now we ghall define a mapping

’3._","' e x + Wa takn a point of S[V,r) with coordinates (=, o, t) and

aasaciate the point of W, with the coordinates {alz),u,t] . Thle definaa

1
an anglytic mapping S5{¥,:] — ".l-'l and, by passing to gquotisnt varleHsaa,
it givees rise to an analytic Lsomorphiam S[V,r)/T, ~ W /T, , Nextwe take
a point of WD with coordinates (G,u,t) and apaceiate the point & of ¥V, This

defines an analytic mapplng W _ == V and then ao analytic mapping

o
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wu‘fra. —= ¥ , which ig suriecHve and proper, In fact, the Hbar over an
arbitrary point £ of ¥ is the abelian variety (1 = U/T,{t]. A¢any rate,
if wa combing tha twe mAppings WI.I"I‘3 i E-W.r]fl"a and WUHI‘B —_— Y,
we get a cootinuous mapping ¥.* ~— 7}/, which is surjective and proper.
The verification ie left 28 an pxarcise to the reader. We lmow that this ia an
analytie fscrnorphler ia the cpen sgbeai ‘-'i"l,-"I'j + Alao the remark we made
hefore about the analytic strugture of " around polata of ¥ ghowa that the
roapping ia anzlytic around pointe of Tn'-’ﬂ,.l"'l":.r . Therefore Y * — ¥, iaan
apalytic mapping or a morphiam and the theory of the theta-functions shows
that it is 2 "blowing up” of X along ¥ . We have thus obtained the following

e gult:

THEOREM 1, Let 5 be a Slegel domein over T satiafylng (5} ; le¢

'Fﬂ be a proparly diacontinuous group of analvtic automerphisms of 5 auch

that T ism Tn-raﬁnnal. Thon, if tl}

TD gatisHes (T'), 2 melghborhood of the image point of tl:r in the

i3 not a Azed point of T‘l‘frz and if

compactdAcaton of 5"”'-:: can be Blown up slu-ng the image of T to a non-

singulat veriaty ac that the Hber over the image paint ¢f t naar 1:[:| 1o the

abelian variety (i s Ufr3{:1 .
We note that, in case I‘D iz not emall anaugh o satizfy (T), wa can

sl Mow up the image of T 30 that the fiber over the lmmage polnt of ¢ is

the genaralized Kummer variety U,I"Tal'.t] . This process was inveshgated
by Satake [%] in the caese when 5 is the Siegel upper-halfplane and T is

the Siagel modular group of level 1, At any rate, Thaosrem 1 is of
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fundamentzl impoztance becauss it gives precisely a link betweon the theory

of autormorphic funcHons and the theory of theta-functions.

4. We shall show that the said neighborhood of the image point of t,
has no fipite oon-gingular coverings. We shall une the same notaticne
a8 bafore,

let & = dzdudt be the (higheat) multiple diffarential form oo the
product € * U %X T and conelder its reatriction to 5|V, r}. Sineeitie
invariant by '1"3 » Wwe get a multple differantial form, which we shall algo
dencta by ', on the open subaat S[V, 1':l.s""T"3 H :ﬂ . Wa obsarva that oo
is holomorphic at every simple point of :I_-,_ « Howewar, gince the
{contravariant) image w* of « under tha morghism L * —> X
has the axprassian {1/2n i }{dw/w)dudt, this is not holomorphic along w = 0O,
MNow, suppose thad jﬁ: hag a finite nun-sdngular covering ’g —-b:x-« .
Then the image .;::v of Lt onder fg — {I ig holomorphic everywhers in

”%f + Thia dependse on the fact that the co-dimeneion of ¥V In j’__, hance

alec tha cosdimenslon of the loverse dmaga of ¥ in 'd‘af are at laagt two,
Conaaquently, if ’y * ip the Cla gormallzation [6] of the product
e -.-:j:"ta( e dota, if’?‘l is the normalization ofthe praph of the “mapping"
? —= ‘Y, the mage oa*® of ¢ undér the murphiam’?’*—ﬂ :-’?ﬁ e
holomorphic at every simple point of /ég ® . On the othexr hend, aloce L
is alea the image of (% gpder the morphiam “y"' — ﬁ * and aince thia
1% a coveting, 1t 14 not holomosphic along the inverse lmage of w = 0,

This is & contradiction, Thersfbre I? hasa no Aplte non-singulay coverings.
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Thie type of argument was auggested to ua by Zarlakd in the apacial
cage mentionad in the Introduction, Wa note that we ¢an arrive at the same
conclusion uvaing sither tha well-known informatdon about the tetal teansform

of & slmple poiot or a tapological mathod, We shall formulate our reeult in

the Iollewing way:

THEOREM 2. Let 5 bo a Stegel domain over T aatlsfying {5k

let I‘u ba a properly discontinuous group of anslytic automeorphiama of =

auch that T ia T -ratlonal, Then, if rn oparates oo 5 without fxed

¢
points and eontaina n gubgroup ['y  of finite index aatisfying (T'), the

compactiflcatlon of $,.I'Tﬂ has no findte pon-singular soveringa locally at

any Imapa point of T,

In faet, lat t. be a polnt of T which is not a fxed poiot of 'l"l.l"'f'3 .

L1
Suppooe that the compartiBeation of E"'IT'IJ has a finlte non=singular covaping

lacally at the image podot of t Since Eﬂfa ia unramified ovar &/T b

I:I [ ]
thia covering has ko go through the compactification of 5;"1"5 . In this way
[¢£.3], we get a finite non-alugular covering of the compactification of s/T II:'
localiy at the image polat of t, - Wa know, however, that this i not poasible,

Since polrts like t. form a dense gpen subast of T, the ¢ompactification.” of

o
SII‘D hag oo fAnite noo-siogular covarlnga at any image polet of T .

We note that, in case 5 is obtalned from a boundad gymmetrle domain,
the axigtencs of T;J io Theoram 2 can be proved by a method which ia
formalized by Selverg [9] . We note slgo that tha 1daa to derive Theorem 2

from Theorem 1 has been auggaetad to us by M, Artin, In our criginal
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formulation, Theorem 2 was stated alightly differently and was proved Hret
{before Theoram 1) as follows. Instead of the assumption that 1""&.‘,l conkaing
a subgroup I‘b of Hnita lndex satlefylng (T), we reguired that T{}. containg
a decreasing sequance of subgroups Tén] with certain properdes, which
i5 in moat easss constructible by Selberg'a method, and proved that the
Almenelona of the Zariskl tangent spaces {33} of the compactificatdons of
S.I'Ttgn] along tha imagee of T neazr b, tand to infnity with o. This again
implins the non-exdstence of finite nen-gingular coverings of the compact-
ification of E,I'TD at any image point of T, It aeems that thia crude method
can ba appliad even to tha cage whan (5] 1a not satisflad.

Wa aoba finally that, in some cases, wo can dlspense with the assumption
(T}, For iostance, in tha case of the rompactification of the guotieot I"
variety of the Slegel upper-half plaoe of gonus g by Spi{g, E), say, we can
blow up the sempactification along the boundary so that Bbers over gereral
points of the boundary Becomne Knrmmes varieties of dimenelon g - 1, There-
fore, by a simnilar argument ag before, using i.'-:l:sr.‘nl:.-:it]3 lngtead of dzdudd
in the case g ia evan, we gae that the compactification hag no Hnite non-
singular coveringa locally at any noundary point far g > 3 . The reason
why g = % is excluded ias that tho Kummet varlety of dirmenalon cne la
exceptional. Actually, in the casc g = Z , wa hava complete information
sinca we know the structure of the compactificadon [4.5] . Om the other
hand, if wa are just interested in whether tha boundary is almple or not,

i.e., general points of the boundaTy are simple ar not, we estimaia the

dmension of the ZaFlakl mngent space of the compactification along the
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boundary. Wec sae easily that this is equal to the oumber of lineazly
independent theta -functlene of order two and of "eharacterigtic'’ zery for
genug g - 1 , and it ia EE‘I . Since tha co-dimensicon of the boundarsy is

£ wagot g = 35'1 as a oocessary and sufficlent conditien for the
boundary to be almple [cf. 13] . Hence, as it wa2a cbeerved recently by

U, Christlan [3], the boundary ia singular, i.e., all boundary pelnts are
singular, for g » 3 whila the boundary is slmple for g = 2, Atany

rate, it i understood that, if we take » subgroup of Spig, R} commenaurable
with Spig. Z} which operates without fixed polate on the Siegel uppat-half
plane, we can apply Theoram 2 to this subgroup ag Tﬂ and we got the

non~axistance of finita non-singular coverings for all g > 2,
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