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ETALE COHOMOLOGY OF SCHEMES

by M. Artin

A topalopgy T consists of a category C  and a collection of families
of maps of C. The chjscts of the category are to be theught of as “apan
Beta’, and the distinguished families of maps as 'coverings" of one cpen sct
ty another. There are a few mild axiome to be put oo the zitpation, auch g=
that a restriction of a coverlog i= again a cove ring {see [ 1] for precise
definitions ). A sheal F on a topelugy is 2 contravariant functor sn G,

€.g-, to abelian groups. baving the sheaf property that whenever a farmily

!
{ Xy —» X} oAmapaof € ig a covering the sequence of abelian groupe
IRLATS! M (Fipr) - Fipry)
O - F (X} “mms [T FUX;) }ﬂjFEEiH};HjJ

is exact, Mot of sheaf theary goes thraugh in this garting, and in particular
one has cohomology theory.

For the atale topology on a preacheme X one takes as "open aetg"

the &tale morphisme ¥'—* X, A family of manpa {K: —+ X'l over X is
called a covoring if X' iE;:Hnrtti:ally tha unica of the imlages of the X, '8,
Let us suppose that f: X' —> X iaa morphism of preschemes of finite
type over Spec €, & the field of complex numbera, Then f s etaie if and
enly if the associated map of the underlying complex analytic spaces ia a local
izomorphigrm, ie,, if and only if every point %' of X' haa an open neigh-
borbood which is mapped isomorphically onto an cpen subspace of X, Now
as far as the category of sheaves is concerned, there ie no difference between
the usuai topology on a topological apace and the one obtained by taking ar open

aete the local isomorphiams. Thia is becauss ohviousiy every covering in the
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latte y sense I8 dominated by one in the formmer senea. Therefore the £tale
topology on an algebrale preschame X over Spec € is & straightforward
algebraic version of the clasaical topoelogy for analytic spaces, One has a
""continuows map'

£: Xolaas ~* Xérale”
and the following result holda.
Theorem: Let X be of finite type over Spec © and let F be a
nectherian toreion gheaf on Az, .. Then the cohemeology maps

HY (X 200 F1 —* HI[X ,e%F)

clage
induced by £ are isomorpbisme for each g,

This thecrers in ite general form requires reaclution of singularities,
The &tale cohomology theory doen not pive the clazsical answers {or a non -
toreion sheaf such as the constant sheai &£,

In general, most results of a basic sart zre known by now, except that
certaln {acts require resclution of siogularitiss, and the cohomolagy behaves
perfectly for torpion sheaves prime to the reaidue characteristica. One has
for ¢xample the specialization theorem. .- . f ! s
Theorem: Let X be a preecherme srnacth and priﬁpﬂ;;- .mr:rL a Eaaa 5. Then

the cochomelogies of the geometric fibree 11 I[J{H. » Efn} are isomerphic for

n prime te the residus characte rigtics.

Elementary Theory:

Cane FaSpec k., k afield: Here the situation is very nice. An #tale map

X'~ X is just the spectrum of a finite separable k- algebra 1:', o althaugh

thec tapelogy ia lar from trivial, it is fairly explicitly known, The main
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rezilt ig thal the category of sheaves on X Eor the &tale topology is egqui-
valant with the categary of continrous G- modeles where G = G {'Il-;f]-r.l in
the palols group of the separable algebraic closurs X of k + Hence the

coboamology is the ordinary galois cohomvelogy developed by Tate [5).

Fummer Theory! There is a sheaf {ﬁ]m }x whoge sectione on an X' &tale

over X are the unite jn the straicture sheal I'[:{r. Er'x.'l [one has to check
that this i8 4 sheal}. One hag

Hilbert Theorem 90 Hl (X, (0 11{} = PFic X is the group of isomorphism

clasees of inveytible sheaves an X . Hence the cobhomelogy in low dimensiony
of “Iirn }x ia known., This giver information about cohomology with valuce

in conatant pheaves because of Kummer Theory: One has the nth power map

Tk
(& ]'x — (B }:.'{ . Suppoee that n is prime to the residue characteristice
of X. Then this map is surjective as a map of sheaves. Infact, if u ica
unit on an A then the algebra
&l 17 (1" - u)
dafines an étale surjective extension of }'.", hepee uv i3 "locally For the

2tale topology" an nth power. Onoo has therefore an exact sequence.

Kummery Theory! 0 —a {Fn]x — '['I'm }x'_n'b‘ {'I"m }K_} &

where (e }}E ie the ahesf of ath roots of unity. The sheaf [mn:lx ig

locally [non- canonically } lsomorphic to the constant sheal X/n.

Case X iz an algehraic curve: Let K be a separably algebraically closed

field and X an algebraic curve gver Spec k, say reduced and irreducible.
Thaoran: HY{Xx, ﬁﬂ}m}x] =0, g=>1
P

where ? 0 means that the group is a p-torsion group, P = char k.
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Corollary: Applying Kummer theory, the cohomelogy of X with values in
(#y b+ (mep) = 1, is given by the exact sequence
0 =, —» DIX. &y 3¢ —> TiX, & ¢ —» B X, ) — Pic X

in
.0 % HE{X, 4, } <= Pic X

In particular, if X ia compilets and noneingular then T X, ﬂ"x }* = k¥ is

divieible by n and ooe finds

0
H tH.fﬂnj = {'un}k = a cyclic group of grder n.
HIIH.mn] = A = group of pointe of order o on the jacobian A of X
(X, } = Zin = Pic X/a Pic X,

Frogf of the theoremn: Let 1: P—* X be the inclusion of the general point
of X. There is an cbyvions inclusion :Em }x—l Ll 18, ?F' and hence an
exact EEQUEnRCE

Q= {EG, gy > ig{C J—>D =D
where D is the cokernel. The sheal D has the property that every
section ig rero cutside a finite number of poiats, {.e.. D is a "skyscraper®
aheaf. OCme can show that thereforse Hq[l'{. BY=0, g>0. Heare, it
suffices {o show

Hqix'i*{mm}p? =g, g=0

which can be handled becavee P = Spac K i the spectrum of the function
field of X. Consider the Laray epecttal seguéncs

HP N, R, (G, ) S HPTI (P (6,,0,).
Becauge of Hilbext Thearem 90 and dimansion theory for galoiz cohomology
{Teen's theorem in particular), HY (P, [d:rm:lpjl -F 0, *r>0, Thuse it

suifices to show that alsa RILIG,)p = ¢, a>0. But RYi (G, )p is

the sheaf arscciated to the presheaf which attaches to an X'fX  the group
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HY l‘:."f"I X KP' { T }P }). Hera x| ¥y P ie the spectrum of 2 geparable exten-
aion of K, i.e., adirect product of function fielde of algebraic curves, i.e.,
ie pimilar to P. Hence H3{X] xx.'F'. H.T.—m}F} ? 0, >0, znd so

qu*‘ﬂm}P ? 0, q>0 zs raquired.

Ey general nengenge methods, one can raduce most quegtions in the
study of torsion sheaves to the case of a constant sheaf such as B, and g0
Kummer theory gives a good hold on dimension 1. The results in this case
are more or less old stuff, girmilar situations having been studied by Tate

Es5], Oge [ 3] and Safarevit [ 21,

Higher dimenaicn and the proper base change theorem.

The cgae of varieties of dimengion > 1 is much meore difficult than that
of dirnenaion 1. In Eact, it is far from trivial to calculate the cohomology of
the prajective or affine space of dimension 2. One obvices approach to the
problem of calculating the cohomology of & variety X of dimension 2 > |}
is to map X o =2 by a nonconstant function and to proceed by imduction
on o =-- the fibres of the map will be of dirneppion (n-1), This leads to the
general problem of caleplating the cohomology of a acheme X with values
in a aheaf F when a proper map f: X —3 Y ia given, Cne has of course
the Leray Spectral Sequence

BPtY,RIE, F) = HPM K, F)
whith "'reduces' one to tha probleame of caleulating

{a) Lhe cohemology of sheaves oo Y  and

(B} the higher direct images RTI F.

Now for a proper mmap [ X — Y of paracompact spaces, one has the
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result that the etalk of RIILF atapuoict { of Y iz isomorphic to the
conemology HY (X g FiX y1 of the fikre [ 2], This is false for the £rzie
cohomolagy of schemes, but is true if one restricts to toraion sheaves:
Theaorarn [ Grothepdieck}: Let £: X — ¥ be a pruper map, lat F bBe a
torslon sheaf on X, lat ¥ be a geometric point of ¥, and let J'E; be the
fibre of X{Y at y. Then the stalk

:qu,Fisr e Hq{x?, FI%_).

With this result, most queations [or complete varietiss can be reduced
inductively to the case of dimension L.

The theorem is obviouely of a local nature on Y, and one can, by a
licnitiog process, suppoda that ¥ is “lecal" for the &tale topology, i.e..
that ¥ is the spectium of a henselian ring with separably cloaed resldue
field and that ¥ is the closed point of ¥. Then the stalk of RIf,F at
¥ is just H®(X,F} and so the theorem reads

Sama Theorem: With tha notaticn as above, suppose Y is the spectrum of

a hangel ring with separably cloaed resicue field and let ]".'.'0 be the cloeed
fibre of X{¥. Then the natural map

HY(X,F) — HL(X,, FiXy)
is bijective for all g,

Cutline of the progl:

Let's asaume that Y is noetherian and X/Y ia projective, 50 one
can suppose X ir the projective space IF"T;.. By projecting " .. :IF"I'-'-l
and induction, one reduces to the case of relative dimension 21! (i fact to

the ~a3e XN = .'[F",J.'l.. if cnm wa.ntﬂ_}, The case of relative dimeneion 31 iz the

core of the proof.
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e take the local veraion above. Now the cohomology group HI{X, F)
in an effaceable functor of F, anod it follows that to prove the lmomarphism
for mach F it suflices to prove bijectivity for g =0 and only surjectivity
for q> 0., That is an elementary sxarcise on morphiama of & fenctors.
Hemambar that we are in the casa of relative dimension %1, i.e., in the case
Xy im an algebralc scheme of dimensaion £ ]|. Thisia essentially the case
af an algebraie <urve, gince nilpotents don't affect the atale topology, and is
well under control. One knowe that the cchorociogy of a toreion eheaf vanishes
for g > 2. Hence surjectivity of the mapa is tzivial for g > £ and it
remaios 10 prove
bijectivity for g =0
warjectiviey for g = 1,2,
Fut one can do sves better: If one is willing to vary X &8 well as the sheal
ona ¢an veduce to the case F = Z/n. This iz done by uatwisting a sheaf F
with the aid of the following
Lemma: Let X be neetherian and F  a noetherian torsion sheaf on X.

Thera ia an integer M, a collaction of finite morphiama ﬂi: x{ — X.

integers m, i= 1, o+, M, and an injection
—=>F-—=> []m {2s].
In fart, writh the lerame and indoction, ooe redocces bo the casgs

F = m,(Zfo }, and replacing X by X;

j te the case ¥ = E/a,,

Henes the proof ia reduced to showing
HI(X, &in} > H* (K, Ein)
bijective if g =0 and aurjectiveif g =1,2. For g =0, recall that of

course HO(X, Z/n) = (Zfn)" where ¢ is the number of connected
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components of X (asgumad finite . Hence one has really to show that X
connacted and nonempty implies X, connected and nonemply. This ia an
cany congequence of Hensei's lemma on Y. For g = 2, lat us assume n
invertible on ¥ #¢ that we can replace ZE/n by the {noncanonically]
tpomorphic shaaf L and apply Kummer Theory. One finds a diagram

Pic X = HU{X, G} = HE (X, By)

b |z

Fic Xy = HU Xy, @) > B (Xy. 8y} —> 0
where d  is aurjective because X, ig an | nonreduced ) algcbraic curve,
Hence to show ¢ surjective it puffices to show b
Fic X —» Pic Xp
surjective. Again using Hensel's Lemnraa and tha fact that -dim Xy 1, i
ie wasy to show that enough Carticr diviscors on X5 Lt e X,

There remains the problem of g = |, Now by general arguments,
Hl(X,Z/n) classifiea Etale galois coverings of X with galois group
Z/o, 5o the problam is to shew that every galeie covering of X, with
group E/n ig induced by 3 covering of X. More generally, ooe bas
Thevrem {Grothendieck)}: Let f3 X —3 Y be proper with ¥ henselian
and let X, be the cloged fibre of X/Y. Then every finite atale povering
of X_ is induced by a |unigue) #tale covering of X.

)

Dnfortunately tha proof iz difficult.
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A DUALITY THECREM IN THE ETALE COHOMO LOGY

CF SCHEMES

J, L, Verdier

We shall present in this expua-:;a duality thecrem which has been

proved by A, Grothendieck, The formulation of this theorem ia the same
as those of the other duality thecrems which ¢an be found in naturé:
Duality for coherant sheaves [H.E,l , duality in the cohomology of
pro-finite groupa, Foincare's duality for topologica!l varietiea, ... .

To get & duality theorem, we need z theory of cohomelogy with
compact support (B 2} . Then the duality is daefined by the Gysin'a
morphism {or trace morphism] (8 1. 1o 81 , we shall recall the baae
changing theorem for the etalc cohomelogy which 13 the main instrument

in thia question,

31, The base changing theorem in the ctale cuhemclogy of achemes.

Let us conslder a eartesian sguara af preachemes:

X ¢ 4 x!
el | w
54— B &

and let F be a torsion sheaf on X for the atale impalogy. Lt us puppoaé

{to simplify) that the preschema 5 is locally noetherian, The ohwious



natural frapsformation of functore:

fo—— BulyB™
[lower atar = direct image, uppéer star = inversa imaga)

ylelds natural morphisme:

g* R (F} ——= R gH{F)

1,1 THEOREM, (Artdn-Grothendieck): The above morphisma aze
isormorphiama in the twa lollewing canes!

1} The morphisem { is proper,

Z) The torsion of F is prime to the residual characteristics of 3.

The morphiem g is smeoth,

3 2, The direct image functer with proper aupport,

et f: X ==» 5 be a guaptsprojective morphiem of preschemes
whiere 5§ 16 locally noetherlan, Let ii A —> R baan S5-imergion
of ¥ into s preschema X' projective on 5, For aoy bor gloo sheaf
on X {for the Lrale tapologyl, we shall donote by qutl,'F} the sheaf on

5:
L
R%,(F) = R, {F)

where iI{F] 1 the sheaf on X' oktained by extending F by zero and
whars Hqi'* lo the g+th derived functor of the direct image by the

morphiem {': X' —» 5,



When 5 = apec{C} (the fleld of complex numbazra) and X a2
non-slngular guasi-projective varlety, the qu! arc iaomorphic to the
cohomelogy groupa with compact aupport of the correapondiag topological

variety, [Comparison theoram),

The segquence R { 0 £ g} iaz &-functor, It can ba ahown that

I
it 1o in general oot a derived funceor.

Tha Rq'fl will e called the & -functor direct image with proper
nmuppart. In order to give a sensa bo this definition we need the

2.1, FEOPDEITION: The & -functor r9% doea not dapend on the

t

immaraion i inbo a preschame projective on 5.

Frocf: Let l: X —=—3 ¥* papd 1" : X —b X' be two S-immeraions.

Wwe shall enly prove that there exiasts an isomorphiam functordal in F:

qu‘*{il{Fi] —_— R qf-;{pl [FH

Making use of the Hbherad product, we can supposc that there exista an

S-rmorphiom g X' —> X" puch that the following diagram is commutativa;

K H‘FI 8

e

The composition spectral scquence glvea:
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RPi (B g (i ) == &L, F)

To determine the sheat ng*{il IF)) , we can conslder the fibers and
apply the base changing thesrem [or & proper morphism. It becomes

therafore clear thal:
ng*{it{FH = 0 q > @

and that the canonical morphiam i'!-[F} —_ g*fllﬂF” is aty ieomorphigrm,
" hat remains t0 be shown ia that these varioué lecmorphisma ars
compatible, This can ba done by the patne mathods,

The properties of the functor qul are gummed up in tha following

2.2, PROPOSITION: 1} The functor R, commutes with the
change of the bane.

1} “hem [ ie guasi-finite, quI = 0 (g # 0 Inpardcular

when f is £tale I-'t':lii = 0 fg # 0 and £ ia thefunctor cxtenglon
by geIC.

2] . e have a spectral sequence ¢f compasition,

3} Let ¥ C—>» X be a closed aub-prescheme and T the
complemantary open sub-preschemea, kst FLT1 be the sheal rostricted
to T gnd extended by zero on ¥ 3od F‘h’ ha the direct image on

¥ of the reatrletion of F on Y.

‘Wa get an unrestricted exact peguanca:
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| et LB

5.

q q+] q [ B |
raa quiifmu—a- R (F) — R%!{F?} — RT T IF )
4 Let (U —> X} be a separated etala covering of X . For any
pimplax o = [nl.ﬂ.z,....llp} wa ahkall denote by Uﬂl tha prescherma

U P van X Uu and by I the morphismn [ composed with the

a s i 1)
i P @

cananical morphiam UU —» X, Let ug denote by FfUﬁ the inveras
frnage of the sheaf F an Uﬂ' . Forany q > 0 and for any simplicial

applicatien o =—-3 g' , we get A morphiam of sheaves on 5;

q
R, {rfuﬂ:——}r quuﬁ,[iFfUﬂ,]'

al

which ylelds 3 semi}eimplicial complex

— q — q
-3 (1 By, o fF/U 2V 3 11 9%, [{F/u
a,p ase & &

Let ue denote by HP{qu,LU, F} the p-th homology sheaf of the above

complax,
If the covering i finite or if the dimenalon of the Ebers of tha

morphiam £ 18 bounded, wa get a spectral sequence:

Prq _ rf
ES H_P[ f'EL!‘

Whan the Bbers of the morphism § are of dimeneion £ 4, the above

Fl =——> R*EI{F} .

spectral sequence ylelds the exact geguence:

24 — 2d 2d, m
(z.2.1y J| R ’uuxﬂual{””u“s”a’ﬂ! L R, /U )= RV ()

ad
o, B o



Proof: Tha first three assartions are obyloga, Let ga grove the

fourth one. Let ua dencte by F the sheaf ragtricted to Uur aod

Ug!

axtended by zers, The complex of sheaves on X: Gl{!.lu +F] deduced

from the semi-simplicial complex
'_—'}J——LFU::U1—*J—'-FU| > F

e
a,g 5P o %

3 acyclic [look at the fibers), Taking an immersion it X — X'
inta a projective preschems over 5, we <an take & resolution of the
complex § CHUF) by nbje:;‘: which are 1)~aeyelie ({': X' — 5) .
The apectral seguance of tha double complex whtalued by applying the

funcior f; yvielda the expected result,

i 3. The trace morphlsm.

iy this paragraph, we are mainly interestéd in the morphiamas
f+ ¥ =3 5 ofpreschemeas which possess the following property:
{5} f ia a smooth and quagi-projective morphism. The prescheras 3 ia
locally noetherian. The dimanwsion 4 of the fiber at any point X € X {3
indepandent of tha considered point,
The number o will be ¢alled the ralative dimension of X over 5.
The aheaf I { n prime to the residual characteristes of 5| is
defined by the exaclt saequance .

G % 0
-t =rr

{gm denctes tha sheaf: maultiplicative group)
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The ghaaf on X ¢ u: will play the role of a relative orientation eheal
af X over 3 and will be denoted by T:":,.-"S » The sheaf TH,-"'E is gtable
by the change of the basa,

Let 5 = speclk)kimalgebriacallyclosed field, and A& be a cormplete
connacted non-sipgular curve over 5. The exact seguanca {3,0.1) vields

the exact weguance of abelian groups:
0. . 0. n ﬂl
{3.0,20 f ===z H {-'i,un'l —_— H [n_gm:l 3 H tK.Em} —>

W) — Bing ) o alogg ) — B — 0.

Simee the fiald k ie algebraically clogsed, X ts complete, and n prirne
o o

to the characteristc of k, the marphlsm H [a‘EFEm'I — = H (X, G )

is aurjactive, Since furthermore the group HI{K.Em} ia tsamorphic to the

Pilcard's group of X, the saguence (3.0, 2) vields two conorical laomaorphis
1 ~
: a3
H(x,p ) == T (%)
the points of order n of the jacobian variety of X, and
2. .. e
H {4, I.-l“] —_— EJ"II“

{3.0,3) Ly *

Let ue suppode now that X = al - specik{thh , {k algabralcally closed

k
field] andlet [ X —> & = specik the cancnical morphiem, Tha
canonical immeareion 1! A:: — Pllt {projective space of dimension 1 owe

k} yields tha exact sequence of sheaves on P::



o —> -—:l-pn—"—}pu-"-'—'-*ﬂ-

11
I:"?l.'! Ly u]
1
Since . in obviously an acyeclic sheaf aver Pk y We get a

o n ]
segquenct of lacmorphlemae;

2 e | - 2,1 o
R le’.unl —» H {Fk.pnxl ~——3 H IIF'R.J..:“} —» Z/n

Let ug denote by:

F e
{3.0.4) Wt R ) ——> Zin

the compoded laomorphism. We can now farmulate the main praposition
of this paragraph., {From now oo, #xcept when explicitly mentoned,

the sheaves congidered will be aheaves of E,.-"n smodulaa |,

3.1, PROFPOSITIOM: It lg poseible in only one manner 1o attgech to any
morphism [: X —* & satisfylng (3}, arnd to any shesf F on 5, one

morphism {called the trace morphism) :

2d
by glF)  ROLUEME) BT — F

fd ie the reladve dimension of K over 51 auch thatt
TR F} 1a functorial in F,
¥ F}L,E': } ctorial in

TR} gy o is compatible with the change of the base.
B

THRZ] Py o is compatible with the compaaition of the maorphiamae.
]

TR When { ia etale, Py g 1 the canontcal moerphism yitlded by

the adjunctlon formula.



3.

1
TR4) When 5 = specik), X = A, F = Z/n , the morphism

[(Z2/n} ts equal to ok (3. 0.4

Px, s k

Furthermore the morphism py g ROBEEDIAR the following proparties:
¥

{a} ¥hen the fibers of the morphistn  are connected and non-ampty,
Px. 5 is an isocmorphdam.

b} When 5 = specik! (k algebraically clopsed fiald), when X isa
commplete, connected, non-singular curve and when F is Er,-"rn s the
mosphiam Px, s s eqgual te (3,0, 3}

{e} Tha rmorphiame PI{,E for different n are compatible,

Let ug first elucidate the axiorn (TR2), Let £: X —> 5 and

g: 5 —= Y bLatwo morphisme of preschemes satisfying (5},

Let d and d' be the respactlve relativw dimensiona. The functor

qul (reap. ng[] is null far q > ?diresp.q > 24'l. Therefore the

apactral sequence of compoeitian yields an issmorphisem

1 —— L
szglﬂzdil . piid :HEEI .
Furthermore the otientation sheai T:-: /A is canobically lsomorphic to

T:{IY (%2 ﬂth,"Y] 20 Ehat wa have, for any sheaf F on Y, a natural

isomorphism o that we can include in a diagram :
2d' 24 .
g(R IIITKIS@.-F[TSKY HKrg*FI
24"
3. 1.1 R )
{ ! Px, ¥ EII_P' X5

! ¥

~ .
Y/5 g 2d EI[TE;’?@E*F:

Hz{d +d.]E{I[Txf5® fxg*F) T H
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The axiom {TR2} i» that the above diagram must be commutative,

Froof of the propraltion: Unlguenese: By (THL1) we are educed

to the cgse 5 = spec{k) whara k i# an algebraically closad fleld.
By (TRZ), (TR3) and the exact sequence {2, 2.1] we are reduced to tha

casa when ¥ ia afflne and f of the type:
X B Ei —  gpacik]

whara g 1a atale and :jd ig the affine space of dimenslon d over k

k
(Defioitdon of ameoth morphlsm), By (TR3) and (TR 2Z) we are raduced to

tho case H = .P-d and f: gd ~—3 gpeclk) the canonlcal morphisin.

- k
1
Gy induction on d and (TR2) we are reduced to the czee f: a_’-k —3 ppecikl.

Since the funstors R comrmute with inductive limits we can auppose that

|
F = Z/n, The axiom (TR4) completes the procf,

Existence; We ghall aketeh the main steps of the proof,

{1} Suppose that the moarphism Dy, 5 is congtructed when 5 and

d
¥ ara affine and when f is of tha type X '—E""‘fs -~ 3 with g
atalp and that it aatlpfles {TRi), 0 < § < 4. Then, by locallzation on
wE can consiruct

X {2,210 andon 5, . it io the general casa, The properties
(TRi}, © < 1 < 4, ran azsily bo verlfied.

{2) There exigtg one and only ¢ee functorial isotnotphdam:

2d 24
RV (T, c®OF — R £(Ty o} OF

such that the properties (TR1) and [TRZ) zre satisfied, so that all we

have to do ia to construct the morphlem &, g only whea F ia the
bl

condtant sheaf Z/n,



11.

{2} Suppose that the morphism a. 5 le constructed in the two
r

foilowing cases:
{1} The morphism f 1s étale and the roorphiam _p}{'s poAERYEad

the propertdes [TR1), {TR2), and (TR3}.

d

{2) The morphism { is the canonical morphism g, ——3 5

snd the morphism 5. . poseesses the propertdes [TR1), {TR4) and the
r

propaTiy:
(TR2)' Tha morphlam Py = is compatible with the S-automerphisms of
L

ég induraed by the permutations of the Indeterminates.
Suppose furthermere that the thus conefructed morphlame verHy the
following compatbllity property:

{C} For any dlagram:

}{—-E'—-—-—Tl-

:E
E l
pl—-———ph 5

A s gpec{k}
with g and g atale and b and h' canenical, the btweo morphisma
RE:![TME}——:, Z/n  obtained by applytng  (3.1.1) are equal, Then
we can construct F*:-:.s in the peneral caea,

L=t us prove this assertlon, Let £1; X E N gg —>= 5 bea
morphism with g ¢étale, We shall define PX,5 by the diagram
(3.1.11., The anly paint o ba shown is that the 8o constructed morphliam
dosa not depand on the {gctorization of £, The propertias {TRt} c¢an ba

¢ngily deduced afterward, To show thls independance, we can suppose that

5 = gpec{k] {algebralcally cloced field), ietus conalder
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d
X b s 55 twe factovizadons of I, Ao 5-
L motrphism of ¥ into ao afflne space over
d
F —_——— =
£ § = apecty) S ia dutermined by d global sections of

ﬂ]{: Mefgrres Mg - Lat Lﬁ"}{fﬁ be tha
coherant sheaf of the relafive differentiale ¢f X on 5, The sheal fﬂ:{fs ie
locally free of rank 4 on ﬂ}: « Ltk dﬂl”' dﬂ'd be the differentials

of the sections L FCEEL P The conditions for the morphlemn g to be etale

atw that tha sactions dﬂi af 'J‘L}{;"ﬁ generaba tha gheaf LJerfE r Lat

ﬂ'l ....nh be d gections of O_ which determing the morphdesm g'

-

The quoeption being local on X, we can see sasily, through permutaticns

of the variahlag and successive substitutons, that we are zeduced o the

case ﬂil. =y 2 £ 1 < d, That means that the following diagram

18 cormmmutative!
T ——— AIA d=-1
-5

de1 ﬁd-l 8 = specik].
"_5‘5 =5

d=1

But now looking at the fibers on £5- and applying the property {C)

wa are done,
{4} Let us define tha morphiam P for f ﬂftala in the obviocus way.
[ ]

The propertles {TR1}, (TRZ2), {TR3 can easily be verified, For

d
Ir: £5 —2 5 we ahall define Py g by induction on 4 8¢ that wa are
[ 4

reduced to the case d = 1. Using argurnénte similar to these used in

the beginning of this paragraph, all that is left for us to do ia to define the

rmarphisrm Py s when X = P; , Butin tbls casw the sheaf on 5
]
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lel[Gm} is eanonlcally isomeorphbic o the constant sheaf Z  and tha
conatruction in easy, The properdes (TRI1), (THZ|' and [(TR4} are -
obwloyg aa that we still have to chack the property {C}, This zan be done
by claesical srguments using the norm.

To achlieve the proof, we have to check the propertdea {al, {b}, and (ch
The properties (bl and {z) ara obvlous, To check the property (2] we ara

immediately raduced to the case 5 = spac{k] {alpebralcally closed fisld).

Th#n we can usa tha ples neighborhonds of M, ArHn and procesd by

indurdon,

B 4, Formulation of the duality theoram,

In this paragraph the morphlism {1 ¥ — 5 of preschemes with

[y

the proparty {5} will be fixed once for all. The relatve dimeneslan of 4

over & ia 4.

4,1 Tke derived category: We shall dencte by E’n[:{] (rasp. Dn[!i'ﬂ the

derived category of the abelian category of sheavea of E-,.I"'n =moditles on X

{resp., 5} [H.5.) . Lot vs vecall brlefly what this category 1a, ﬁn{?ﬂ ia
the catagory of complexes F° of gheaves (the differentlal is of degree + 11,
up to hometopy o which the morphisema which induce taomoerphlems on the
objects of cochomeology arm inveras,

The category D;{}f.'! {reap. E;{x} s TEAD, D:{}:j 1 is the full anb-
catagory of the complaxes F* of EI“{L'{] whaae objacta (F© ]E' ara null
for I <« Jriu{l-'“:l resp, £ = _,ED{F':I- + TEBP. _Eﬂl{l'"fl < & and

F < Yy,
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The category Dn[xl- posspsace 3 friangulated structura , i,a,, for

any morphiem F" ~— G we got a triangle that is undque up to

won-unigue isemarphism (the mapping cylinderk

deg{w] = 1 w L/"f \ v [}

B u ek

Such triangles are salled the digtinguiskbed triangles,

A funetor Dn{]{} — Dntﬁi is exact i it tranaforms dietinguished
trlangles ioth distingnd shed triangles,

A cohomolegical functor R from Dnl:}".']l into an sbelizn category

trangforms any diatingrished triangle (1 inte an inflolee exact sequence:

ey — RuF‘ —_— RDG' -_— HBH' —_— RIF‘ — e

The usval fanctor "¢ < rnolegy” is a cobomological funchor with valuas
in tha catagory of ahaavea on X .
Tho funcior Hamnn{m[r'__} fresp, Humnn_:x}[. L F'1) isa
cochemelagical functar {resp, a comtravariant cohomological funcotrl,
The group HumD {KI{F' +57) la sometimes called the hyp&r-Ex:ﬂ group,
The categary D:l{l'{] ie eguivalent to the category of complexes of
injective shesves, bounded balow, up to homotopy, A resclutlon
F* —» G' of a complex F° ia a morphiam which lnduces fsomorphisma

on the cohomology , i.e., which yielda an jaomerphlsm In the catog::oy

LX) .



15,

Ta any aheaf F on 1Y we shall asseciate the following complex of

pheaves ot % also dencted by F

(F}- = o far B F 0

The functor thua defined from the pheavens on X into Dnixl inm fully
faithful, Exact sequences of gheaves on X yeill! functorlally distinguiched
triangles,

4,2, The exact functor BII .

Lok X —--L-zn b -f——;r S bean S-imerslon of X into 2

projective prescheme over 5. Let F° e a complex of sheaves on X
boundad below and let ua take a resslution of 1 I!F- by a complax of
injuctive aheaves ou X', Applying the funceor £, we geta cotnplex of
sheaves on 5 and therefora an obisct of ﬂniﬂ} which we ahall denpcts by
I_HliF']- . It can br shown that the ohjeck Ef!-!F']I depends functorially on
F* , (it does not dapend up to unfque jsemarphism on the lojective
rcastution and on the immersisn § . prop. 2.1). Furthermore the fanctor
Efl can be nniguely factorized through the category D:{KI. The L[unctor
thus defined will be agailn dencoted by;

Rf. : DX} —= D(5) .
=1 n n

The functor E:[I is exact, For any sheal P on X the goboamole;, 2aves

of the complex EfI[F} are isomorphic to the sheavea quI[F] . {ef. 8 2L
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Since the functor 1, 1is of Hnite cohomelegical dirmension (24}, the

functor Rf I

¢an be extended to the categories D [X) — Dnﬁ]' (e

can take a reaclution of any complex on X' by complaxes whoee cbjecta are

f, =acyclic} and by vestricton to subacatagories wlelds various functore!

B, 3 DK ——> DS

b [+
Rf, : anl:x} — J."HISI

4 1 PROPOSITION, 1) Let 5 -5 3 ¥ be ancthar morphism of

preacheme popaassing the property (51, The canonical morphism

E[gi.’!l —— Eglﬁfl is an lsomerphlsm,

Z) Conelder the following carteslan square;

u o

|
!

F

:[I

u!

L]
- N

£

SI

The canonpical morphtsm of functora:

wHRf, ~——> Rfju

ip an isomaorpiklem.
The first aseerton la obvicue , the ascond one ia the bage

for proeper morphism,

changing thecram
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4. 4. The twiated inverss image functor,
i
Let G = ... —» 6" 456 —ao™) —y || b

a complex of sheaves an 5. o sghall denote by illlﬁ:i'.'r the Lollowlng
complex of sheaavas on X ¢

E f+2d

Went = ma™ o,

2 F¥2a

afutiay = mattd ®id

X/5
Thia functor ehvicusly yields an exact functor alac denoted by £I :

I -
f : D {5} —» D_(X]

By restricton, this functor yieids varlous functors:
+ +
I {= X
o — B_IX)
L i8) —— D (X)

o'E ——a Doy
n [ r]

4.5 FROPOSITIOM: i) L&t & —-—E—-} Y be apothar mo-phiam of
preachermes with the property [5) . The canonlcal movphiam
!
gt —— ilgl if ao isomorphliam

2} Consider the foljowing cartesian aguare:

e xi

fi l:-

Il u! SI
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L The cananical morphiem lu.’* - u'l[! 1s an {isomorphiam,

Those two assertdons ars abvrioua,

4.6 The trace morphiam in the derived catagorics,

i f
let X —# X' =—235% 2 bhaan S-immersion of X intoa

projective proscheme over 5, and T be a sheaf en 5, Let us take pow

a resolution on X' of the complex itill{f_‘r} t

D-—:-u-—-—a-x'zd—‘-:-i'zd”—a-.,.——-:-l'}ipll—a-_..

0 i}
Let 2~ be the kornal of the morphdsm 4 . we have a rescluton

CHG) = ... 0 —» Rl L) ces — T e 2V g —

|
of 1I{ (5] by fi,~acyclic objects and therafore the complax on 5 :
£ ACH™G)) is canonically 1somesrphic in Dn{E:— to the zomplex _F-'f!fj(ﬂ] .

But now it ie clear that we have a canonical morphiam of complexaa;

I 2d
Eflf Gy ——» R f]{f*{G] ®T:=:fs’

and uging the trace morphism we get a functerial morphiam;

Tr REf1O) —> G

x/s -
This merphism can easily be extended {by means of Carten-Sitanlorg
resoluticns) to any eomplex of sheavas on 5, and vields a masskirs of

exact funciora,
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4. 7 The duoality morphism:

Let K' be an object of J:r;{l‘{] and H* be an object of Dul!i'{:l . Lat
us denote by RHomi{H ,K'), the followlog complex e X ¢ Take an
inlective resolutien I' of the complex K'  and conalder the cbiect of
Dﬂ[HI defined by the complex of sheaves: Hom#*(H™ ,I') where Hom
1% the homomorphiem aheaf, Lat vs asgume now that H' 18 an object of
D;{x]' and let va apply the functor global section on X, Wa get now an
object of L{A%] which we shall dena by : BHom(H ,K'}, The sheaves
of cohomology of RHom (H", K*} are the local hyper-ext. The groups
of cobomoleogy of FHowmiH', K"} are the global hyper-axt,

In the same way we define RE(E™) ¢ Take po injectlve ressivtion and
apply the direct image functor,

By functoriality of BRI, , for any H™ object of D;{KI and K" object

+
of E‘nfxl » we get a functorial morphiam:

B[ RHom{H' ,K'} —> HHun{th{H'}.Rf{{K'!}

which gives, when we apply the functor global section o4 5, a fimatorial
morphianm:
RHom(H" ,K'] —— llHn-m[F_.f!-[H" },EIE{'.'.' :*
which yields, taking the cobhomology, functorial merpnizin of w5 ]
Ext"(H',K') — ExP{Rf (1), Bf (K'Y

But now uaing the trace morphiam, we obtain morphisma:
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1 [ ] I r - -
A’y e ¢ BRHOm{F' 0 G") —> RHomiRf F', G°)

‘&:2-:;5 : RHom(F",§'G') —» RHom(Rf F*,G')

Ay g ¢ B 1/} e ExtPiRLFLG7)
for any F* objwct of D;l:l.'{ll and G ohject of D:fﬂl.

Lat us then formulate tha duallty thaoram:

4.3 THEOREM (A. Grothentiockl: The morphlsms AL s (4 + LY

a*e inomorphisms ,

REMARK 1: Azswme 5 = speci{k) {algsbraically rlosed Seld} and X
connecked., Let G° be the group Z/n and F* =+ F be a shealon X,
The duality theoram ylelds an lsomorphism [ww shall despote by HE[K. F}

the groupe HF:I'!'IF.'! Y3

Hnml_’l-l:{:{, Fi.2/ab ——» Ext™0"Pix,F, Ty sab

Aspuma forthermora that F s locally iree and of fAndta type. Usloo
spactral sequance from local Ext to giobel Ext we obtyin: (377 = Marpeil, ij,—ﬂ:l}

Hom(HP(X, Fly Z/n) — e 179y

which can aleo be lormolated in the foliowlng way: Th» =r...o20 -0

23,

P 2P (X, T o
HAX,F) () H (KF) —» HEX, T, ) Z/n

is & parioct duality, Thie is ona of the claxsical formulasicas of e thaoram

of Poincare,
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REMARK 2 Using localizatien (asscciated sheaf) and global aaction
{speetral amguence frem local to globall, it ia ezay to paa that if for scme

il =1,2,3) the murphiﬂm&?{f ia glways an iscomorphiam, all the

3

&i{ P iscmaorphisma,

8 5., Froof of the duality theoram,

wWe ghall akatch tha proof of the duality thearem.

Let ug recall firat that, the preachemes % and 5 heing locally
noetherian, the categories of sheaves on X and § are locally neetherian.
Let ua racall also that a noethertan ahaaf G is constructbla, i.e., any
point possesses a neighbarhood which poasesses a findte partidon into
locally cloged subsets on which the ahegf O 1s locally conatant atd of
finite type., In particular any constructible sheaf 18 locally conatant in the
neighborhood of the generic point of any irraducible component, It can
be shown {zs 2 corollary to the bpee changing theorem for propar morphism)
that the direct images {including the g-th dlrect images q 7 0) of a
conatructible aheaf by a proper morphism are constructible,

Let X - 5 be a rnorphist which posassses the property {S),

F° be an ohject of E:;{I} and &' be an object of D:;{E'l . We ghall
denote by (1, X,5,F",5") the property: The morphiam JAS :iﬂi,-“'S[F- L) s

an iscrnorphiom.
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5.1 LEMMA: The fcllowdng properties are equivalent;

{1i Tha duality theorem is true for the merphlam f,

fiil There axiste an ifi = 1,2, 3) and an etale covering H.lj —_— X ]
auch that , for any guasi-projective otale morphism U —>» X

which can be factorized by the abave covering and for any constructible

sheaf O on 5 we have the property (i, X, 5, _E'_-,I’HUI.G} .

5,2 LEMMA: Tha duality theorem la trus when f is étala,

5.3 LEMMA: Let 5 &= Y be a morphism with the property ($),
H* an object of D:{Y} and i be aninteger 0 < 1 < 3. Let ue

suppose that ftwo of tha proparties belew hold:

1
{i, X,3,F",g H") i, 2, ¥, F' ,H"} (5, S, ¥, RE,F*, 1"}

Then the third one alao helda,

Frocf: The last lemma comes drectly from the transitivity property
{4.3; 4.5: 3.1 (TR £Z) }» The second one is obvious, Lat ygs prova the first
oné, Any object F' of D;tlﬂ admits a reagelutlon P —-3 F" by
acomplex of ¢hetype ; P" = ., —» l"..,r"nu ) — 2Z2/n >0 -,
wheora the I.'J[1 and the Uk are atale over X :md can ba factorized by the
tovering 'EUj —* &). Sothat, by spectral sequence argument or by

the way out functar letnma [H,5,}in ordes to prove the dyzlity theoram,

wa are brought back to tha cage F© = [ ! E,ﬂ"nu p v with Ui noetherian.
L i
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Since tha functors Rqu and Ext® comrmuts with the infinfte aurn we

ara brought back to the case F' = E,"nu | - #gain by spactral
H
s¢quence argurnent we can suppese that G' = G ia ope sheaf over 5.
But pow, aince the ahejyvas E,.-"::U apd RY (Z/n ] are noetherdan
- 1! I'= Uil
'

sheaves, the hypar.axt Ext*[EiI{:_?.,.-"'nu 1 G} and E:Itt*[Equ !.i' 3

i i
cormmute with the diract Hmiet of O and therefore we can suppose
that O is noetherian, L. e, constructible, Y& thus prove the

irnplicaton {ii] =% (i}, Tha cther implicaton ia obvicus.

5.4 Firgt reducton; Uaeing the three lemmas above and atraight

forward arguments we are brought back to tha proof of the theorem in the
following caga:

{a) The morphisrm [: X =—> 5 is of relgtve dimeapsion 1,
X and 5 are affine noatherian.

{8} The complex F' is the constant sheaf E,-'"u .

{c} The complex <" iz a constructible sheaf,

Thus, by the firat reductHon, we heve to check that the morphism

1
.40 AL Bei'e) ——> BHom e, (2/n), )

1% an isomorphism,

let w € 5 be a generic point of an irreducible component of 5,
The sheavea G and qullgfn]- are constant op an 2tale nelghborhoad
of n {they are constructble) . Therefore the cohomology sheaves of

the complax RHom {P;Iligfn!'. Z) are constant on an étale neighborhood
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af -

5.5 LEZMMA! Apeume conditions [al, (b), (c) of the reducHon 5.4,
Denote by 1-; a geometric flbor of £, The cohomelogy sheaves of l_?ftiilﬂi
are congtznt on an ctale neighborbood of y. The complex I.if,lffl-l.'.'.r}a ia
canond cally igomorphic {in Dn[ﬁ-h] ] to the complex _131;*[!]; 'G:} Y.

We shall not prove this lemrma, It follows fram the "relative puricy
thearem' [5.G. 8. A_], which is one of the condequancea of 1,1,

But now, by the lemma 5.5, to see that the morphism {5, 4,11 is
20 lagmorphism o a neighborhood of v, it is coough to look at the fiber

—_—

-:":;']' —=—* N . i.#., wa are reduced tv the case 5 = gpec{k] (kan
algahraically claged field), Furthermore, to prove that (5,4,1) ie an
isomorphism we are reduced, by an easy nostherian induction on the support
of the phaaf &, to the case where the aupport of O is a closed point of
%, and we are immediataly reduced again to the case § = epeclk}
(algebratcally closed fisld),

Lat us suppoee that § = apecilk], we ran embad the corve X into
3 complete non-asingular eurve X' and we are easiiy reduced to prove the
duality thecrem in the cage

{a¥ X == S is a completn non-singular curve sver an algabraically
closad fiald,

ft)' The complex F ip tha constant shasf Z/n,

(cH The compiex G is the conatant sheaf Z/n,

Thue we have to prove that the morphisrma:
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HO{2,p ) ~> Hom{H (%, Z/n}, Z/n) (5.5, 1}
Hl{;r:,un} ——» Hom{H'{x, Z/n}, Z/n) (5. 5. 2
HE{}{,pn'l —» Hom(H{X, Z/n). Z/n) {5, 5, 1}

are isomorphisms, Thie can be seen eagily for {5.5.1} and (5,5, 3L

For (5.5.2) this Bollows from the autoduality of the jaccobian varlety of £ .
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ALGEBRALIL COHOMOLCOY CLASSES

J. Tate

Tha £ -adie dtale cohemoalogy of algebraic varietics ia much richer
than the classical cobhomolopgy in that Galols groups operaté on it, This
cpend up a néw Seld of jnguiry, ¢ven in the clasaical case, Although thecrames
geom acarce, the soll ie fartle for conjeciuren, I ask your indulgance
while ! diacuss some of these, together with some meager avidance, hoth
cormputational and philosophical, for them., The main idea ia, roughly
apcaking, that a cohomology clace which la fixed under the Galois group
ghould bo algebrale when the ground fleld ia linitely generated over the prime
field. I have come to thia idea by way of ita relation to questions of orders
of polos of zeta (uncHona, Moast of the signpests along the way became
vigible te me during convereationg and/for carrcapondence with M, Arbdn,

Mumfsrd , and Serre. 1 thank themn heartily for their guidance,

B . The £ -adic cohomology, Throughout cur diacuseion we shall

considar the rituation pictured bolow, in which k i a €eld, *  an
W k
.f.f \
.-"
.___.-""
k G/x)

algebrailcally closed extension fleld, GE_I;,.-’IL} the group of avtomerphiama of &

over k, ¥ anirreducible arhame projective and stheoth over k, and
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¥ o ¥ % K the scheme ohtyined from V by base extenslon to k. For each

k
prizne number _§ different from the characteristic of &k, we put

1 —
{Lm H'(V¥ mﬂ.wﬂ 17

1 =
(1) H, () -2 @y
£ COTE e

where f{t&l& danctes the étale topology of V. Inthe classical ca5a,

k= & , the comparigon theorem of M. Artin allows us ¢o replace "'Skate"

by "claasical” in this formula, The inverse limit is then iromorphic to

o2 ¥

clagsical’ Z, } and consequently wa have

i, iz i=
Hy{V) o H' (¥ bW B H B

Ir, the abatract cape thare s no good cohomology with ratlonal coefficients, and

classical” m_.E.

it is the groups Hl (¥}  which play the rele which wa are accustomed to

attribute to “'cohomology with coefficients In @y " . lunderstand that the
etale cohomologiate have eatablished finfte dimensionaiity, Potncaré duzlity,
Kunneth formulas, apd a Lefarhatz fixed point theorem for tha groups HjE .

The proper bare change theorem shows that the ETOUpB Hiﬁ de not changa

if wa replace k by a largsr slgebraically closed field, As Mike Artln said

in his talk, tho situmtion ia just tike in the good old dzys,

Ino ona respoct the aituation is even better, because the Galoig Eroup

G{i,-"'k} op2rates on the groups H* 'ﬁ} « MNamely, it operateg oo the product

{

? = ¥V X K _..i M
. k through the second factor, and bence on the asite vata.le' the

polot 48 that the atale topology depands only oo ¥V and not oa the arrow

~» Spec k which 6 used o define the claesical topology when k = @,

=}
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Thera rasults a2 hemomorphiam
— i —
(2) Glie/k) —» Auty (H{V) > @bl (b, @y )

i
[where bi = dimﬂEH‘q = 1th Bettt numbery. Uslng the bage change thearsm

cne geed that the homomorphiam (2) induces a topological isomorphiam
Gk /) —_ Gf! between the group of a eertaln Galole extenslon k'
over k and z certain closad subgroup Glt_ of @IL '.'bi. ﬂi]; } + Thue the
aituation is exactly as deperibad by Serre [4] incase ¥V = A ia an abelian
variety and 1 = 1, when H} [E} can be ldentifiod with the dual of Sepra's
"IF_J?_ {A), Tha group GE is an _{§ .adle Lia group, whoas Lie algsbra
j} : ia unchanged if we replace k by an extension of finlte type. Thege
Lie alpebras of Serre's raise a host of new probleme, even, or pechapa
eapecially, in the clasgical capge,

For cxample, let X bo a comnplax projactHvye nongingular variety,

Then we can find a field k < € finitely generated over 0@, 20d 3 scheme ¥

over k suchthat ¥V = ¥ % € = X. Tha Lia algabras
I

i i
%}_E c End“ﬁ (' (x, @ ﬁ 2,

which are which are obtained in the mannér juat diacussed are indepandent of

the choice of k and ¥, and dapend ondy on X/€ . Almost nothing 10 Joown

about them, of, Serra [ 4] . Is thelr dimension and type independent of E, [y
Aro thay reductive ? Sarre (5] has shown the answera are affirmative in
case X in a cornplex torua of dimension 1 whose j invariant ia either real,

or not an algebraic integer, The conjecture about algebraic cyeles wideh T
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am going to discuss in a moment has the following canseguenca in tha
preaent sltuation: Lot oo € HE{K. ®B] be the echomology elans of 3 hyper-
plana secHon, For x £ [}? s et x it lil[x}fr.-"i r with ?ui'::-:l € ﬂj .
Let & € Hzi[x*d}}. Then [econjectaratly) some multiple of @ fa the claga
of an algebraic cycle ¢f codltnension i if and only I x8 = .‘-'l.ifx]"Ei for all

X 1:%}? .

iz, G-nh-:-m-::lngy clapges of algebraie cycles. The operation of

Gik/®) on cohomelogy makes it imperative to keep track of "twisting' by

rootd of unity, If GIE.-"I;} cperatas on & vecetor space H aver ﬂ},f, , W

define the twistinga of H to be the G(k/k) spaccs Him) = H IE'm L W m

£

for m € Z ., whora

(3 w=ﬂﬂmﬁeiﬂ{&“}

is the one dimenpelonal ,f -pd{e yoctor ephce on which GtEﬂ"kJ cperatea
according to ite acHon on the group g o of £"-th roots of unity fer all o

' ﬂi b, a0 that H{m}in} ~ H{m+n)

Forall m, n & Z 1., The canondcal isomurphisma

i n {%m - i %tm
HEE&&M'Z;E z) @ ":En — HiEEl:alc'%;fn

{which are obtaiood by viewing ufﬁm as Hom{Z7 EnE- HE:
£

in the definitln {1} of Hjlﬁi. then

}  show that
mm

#a

we replaca Hp(V) by ita m-fold twisting sz-_{ﬁ:l{m} .

if we raplace I/ ihz by

Let d = dim V. Aws Verdier discugsed in his 1alk, the "acientation

aheafl [mod _.En]" an Y ia ,I.F?::l » 80d there is a cansniczal 1gomorphism
L



Ja

et

ad

{4) Py :HE {Viid}

m‘i L

(For practical purposes, "tancnical homomerphism' means G[E,u"k} hamo -
marphism.} The £ _adig Paincare‘duality thecrom =tatee than tha the
cup product pairing:

i,~- 2g-1 — 2d, —
Hf{"u"}[m} u H.-f (Vi(d - m} —» H {(V}{d)} ~ Q,E,

gives & perfect duality of finlte dimenaional vector apaces.
Thus, if X is an irreducible subscherme of V of cadirmension i, wa
can attarh to X a cochomology class c{X) € sz'{"l_l'l[i]l which is characterized

by the fact that

Pylnt U efX)h = p (nx)

A1) =

far all n € H {¥Hd-1}, Extending ¢ by additivity we obtain in this way

& homomaorphiam

(5) “}‘ﬁ} —< HE* Wi,

whare rj'lﬁ'.i denctea the free abelian group genarated by the lrreducible
subschemes of codimenslon ion ¥. Thaae homemarphlsma will carry

intergection product inte cup product:
c(X + ¥) = ofX) U efT)

whenewar X+ Y ja dafined.

’_ -
E} b (Y] denote the kernei of the homomorphiern ¢ in dimenelon

i,[(that 1a, the group of aigebralc cyclas of codimension i on ¥ which are

Let

u g -adically homologically equivalant to sars"} apd put
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Gl - gi‘fla"%ht‘fl

Cne has the follewing conjectural statoments,

{a) ?}Lﬁl 18 independent of £ y Of perhaps aven

(a'} %;l‘,?} conslets exactly of tha cycles numearically sguivalent to zero,

5 CLYV)  te finitely generated, and the tmap
CHUN =B, w¥m
2

ig lnjactva,

Staternenta (a) and (b} are true in charactaristic zero, bocauvsa we

cén then Imbed k in @ and [etor the map o through the finltaly genorated

.
X=-moduls H i{“n" e &) Lor which
claag

i = i=
H,IV) ~ HIY
nf =

clagaical*

o o,

L: the absiract case, nothing is known for codimensions 1 > 1, but for i s 1,

all thrae statemsnts {aj, {a') and [b) are teae, Let f)l :1 = 3; o % ]F
& i -+
which are, ragpectively, numerically,

dencte the gtoups of dlvksors on WV

algebraically, P - y
sor linearly equivalent to zero, The map T : 2{ vy — HE[\-’]U} in
obtained by passage to the limit from the composed maps .
; By 2
I-l ¥ ‘I.FH
Vs 31G) 2 W0 B

where E ia the connecting hamomorphism in the cohomology eguence

derived fr:}m the exact sequence
lﬂn

(&) L e e .
P ™

— )

{see the talk of Mike Artin), For sach n  tha kernel of £n ia EDHII"-_"E.:.E- bs



T

and {a't and [b) now fallaw bacause g :; ,.l"jé ia dlvialble, and

g i,f g ; is the torsion aubgroup of the finitely generated grc-up; I,."r’j :]1 .
From pow on, we shall apsume (a) and (b) hold in whetever situation

ig didewssod, Each frreducible subschema X of ¥ ia "defined" ower a

findte extension of k. Thus X is fixed by an open subproup U of Gik/kl,

and the game io true of its claaa =(X). There i3 a sonfectural convorsn of

this stateraent, namaly;

CONJECTURE L, If klis finitely generated over the prime Held then
1,—_ _consi j =
the space cof C"}_ (V1] @ f. nhlggsthﬂse alements of H;,]'{"-'][i] whose atabilizer
la upen in Gllis}'kl » that ig, which areé annihilated by the corresponding Lie
algabra,
A Pl T

Let (¢ (V] denote the subgroup of {7 {V) gencratod by the

algebriie aycles which are defined over k, If an eloment of ﬂi{\‘_’] ls

fixed by GI:EJ'H . then pome non-zero multipie of it is in lll:"l.?,'p « Thus
'FI'

eonjacture I implieg

(7} el (7 Yvna, = {Hj,"ﬁ T ki

£

for finitely gencrated k. On the othar hand, if (7] halda foz all {eufficiently
large] Hnlte extensions of k then conjecture 1 is true,

Lot now A and B be abelian varicties cver k. 1f we combine the
fundarpontal isomorphiem

Hom, (8,B) —-> Kert(L'la x B — (L 7ay x @ 8

with the Kinnoth fermuls
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Hlpa) © uliB) s Ker{nlia xB) — H {A) x Pb]tﬁn
i £ £ P

&
we conclude from (7)) appliedtc ¥V = A X B with 1= 1 that

Hom, (4,8} B == [Hja} @Hgi*m{nlsw"*

T
£
iz an ipormorphiam, Rainterpreting the right hand aide In terme of points
af {injte order lvia the Kummer geguance [6)} one Hods that thia last ls

aquivalent to

{8} Hom, (A, B R — Hem (= /k) A Bt £70 .

whare Af Qm} danctaa the G{k/k)-module of points on A of order f":. all
v, with coefficients in k. In dovn to sarth terme, if a group homomorphiem
preay . .
w1 Af J'Em]l ——32 B[ r )} commutes with the operation of the Galecia group
for a finitely penerated W, then for every N thare should exist a homo-
morphism of abelian varieties ‘i : & —= B suchthat L, coincides
. . Iy

with m on the pointe of ordar E .

Mumiord has vexified {8} incase k iz findte and & aod B ave of
dimenaion 1, by liffing the Frobenlus endomorphiam to charactertistic d,
3 la Deuring, {1} .
Eozulie of Serra [5] ghow that [B) holds in case k is a numbar field

B ia of dimengion 1 . OFf coures,

with at least one real prime, and A
il {3) holdw for A and P of dimension 1 ., then (7] holda with
Y = A x B,

I can aee no direct logical conmection bebtwaen conjectura 1 and
Hodge's conjocture [ 2] that a raHonal evhernology class of type [p,pl is

algebeaic,i.w., ratonal combination of clasews of algebraic cyclea (In tane
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of divisors this ie a well known theorem of Lefachets and i svan trua ovar
E)., Howevar the two conjocturea have an air of compatibility, For example,
{rothandieck retnarka that each of the two conjectures imply that the Kiinneth

componenta © of an algzbraic claas ¢ on a product V' % V" are

a. b

algebraic, a statement which seemes unknown cven o case of the diagonal on
the producet of 2 surface with iteelf in the rlisgical cage. By the'Kunneth

decompogition'

€= E na.b

a+b=21i

. —
of a cohomology class £ € Hgi{"u"' K V''i{i) we mean its expression as a sum

of classan et € HEi[T"‘ % VUMi] wuch that e ia In the image of
F

a bl
a - b= . . i
EH,.E {V ") @HEW'}][I.} » Conjecture ! impliaa that if ¢ € ::-I'G.. }m_.ﬁ
then Caib € n[ﬁlimﬂ for all a, b. Grothendieck conjectures that tha
4
same is true with £ instead of IIEE;- ¢ a3 wonld follow from Hodge's conjecture

In the clasplenl cane,

1l 3, Connoectiens with zeta functlona {Finite k), Lat ot "}_—} Y

Ee 2 E—mnrph:lum, and et :,:ni N denste the lincar trarsformetion of H‘?‘F}
I .
Induced by ¢, Then the algebralc number J\ {«) of fixed points of

i given by the Lefachetz formula
2d

i
{9 Mo) = ) -1 Tracatg ).
i=0
It ip generally conjectured that

{¢] The charactaristic polynomial Fi E(I:]n = llim:Il-t.-:'1 Eﬂ has raHonal
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integral coafficlents and is independont of _.é], .
{d} Suppeae that there axiste an ample € &.l{f} guch that
o¥u) & g for aome inkegor g > 0. Then the endomorphiarse

G samiaimple, and 1f we writa

b
i
(140 datll -q:‘ilﬁt] = Pi{t] = -ij {1 - u.ijt]

ifz

with complex G, 4 we have ja. | = g for all j, In characteristic

1)

zero (c] 1z an immediate consequence of the exigtence of integral cohomology.

and {d} can be proved by Xahlerian metheds (cf. Serre [ 3] ) In

characteriatic p, both conjectures have baeen proved for curves and ahelian

varietles by Well [ 2], When ¢ is the Frobenius morphiant. conjecture

ld} i3 the famous conjoeture of Waoil [ 9] which started thia whele buaincaa,
From pnow on we shall assume {c] and {d] held in whatever situatlon

la discupeed, Let k = qu be the faite Held with g elementa, For any

acthema X over IE'"q, the Frobenlus morphism F:H: t X —=>= K ie deflned

as the identty map on points, together with the rmap [ —> £1 {n tha structure

cheaf, This F, acts like identity on tha site xétale" and therefore tnducen

fdantity on the eshomelogy groups Hitxe*tala' Z/fm&), o ¥ = ¥ ik

wa have F?——- F"u" HFE = & ¥ o, aay where 0V =3 ' i3 the usual

Frobenicus morphiam, and whare o is the canonical '"genarator'" of G'II-:_,-"rk:I .

dinee o * 0 acte as identity on ¢cohomaology groupa HE{"F} , we have

-1 i —
. = i H W
wl; ) il « where mhﬂ is the linear translormation of ,-IE‘ )

induced by tha E—murphium £ * 1 , and whera o 7 in the lineay
[ ]
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translormation of H; {T’} produced by the operatdon of 0 ag element
of Glk fie} .

The zota function of the scheme V (see Serre's talk) is givan by
P]{q_a} ey ww P?—d-] Eq‘a]
[l 1] : {vl E} = =3 =0 =B '
PD[q ]Pz[q ] 1dd dwaw Pzdiq }

where d = dim V ; and whare Pi[t} ie tha characteristic polynomial of
Frobsnlus eperating on evhomology of dimension §, 28 in flo} . Formula
{11} results from Lefachetz' formulg (2] for j‘i fg:rvll and the definition

of §; eee Weil [9] ., Since the "reciprocal roota" uij of Pt} bave
i
absalute value g€ , tha zerca of (V.s} are ¢on the Hoea

1 Zd=
Rg = El %l!lil'd_z.l' paﬂditﬁpﬂlﬂﬂﬂ.rﬂ on tha lines Ra = Q}l|1|1rrdi
The order of the pole at the polat 8 = i 1im agual to the pumber of times

ql aCcura ag a resiprocal root of Pli[t:" or what jsfhe same, as an

elganvalus of IFE.I. g - By tha semisimplicity of "521 g+ thia g tha
1 L

dlmenesion of tha space 9of % E H,E.El ﬁj such that q‘}zi E_:u'. = qlx y OF
»

i .
* = Uy pdx. Now o operates as q on our bwlpking spaca, W,
2
becaupe O radasg .E 1:..-l.‘i:l rooks of u;-.it-_.r 1o the q-th power, Thwe for

2]
¥y EW we bave Qy = qiy and olx Ky = Tap p ¥ @ql‘fﬁ Y34 ﬂ_qi“ﬂb'-
] ¥

-

It follown that the dmenafon we ara computing 18 that of the subspace of ail

-Eqi -
z & H{VM{i} suchthat oz = z, that 15, the dmongion of

2y _
{H iW]ﬂl‘]G‘HH v H [T f8 Ltua we have thon
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{12) rank (A(V} = order of pole of L(V,a)ata = 1,

aszorning, ag alvaya, that (a) , {b}), {¢}), and {d} hold. Morpcowver, tha
ineguality . always holds under those sassumpticna, and equality 1o
f12) for all {eufficiantly large) finfte extenslons of k 18 equivalant to
Conjacture 1,

I have tried to check (12} incape W=V ia the hypersuriage

DT P

1o projectivie r-ppace deflned by the squabkon

{13 A T A T " oL PSR |

ovar a large Andte Sald k of characterletc p not dividing o, Well {9]
has computed the zota [uncticn and hooee the order of the pole; it ie

the detarmingtion af the rank of {Q_iw] which §g difficult, Theare ig anly
oné non trivial dimenasion i, namely that for which r = 2 + 1. I hawm

succaaded in the verification of (12} only in two special cages.

{1y if pu 2 -1 [moda}l for some v, and [II) if p = 1 {mod n),

and r = 3, 1 = . ln ¢cagae {I}) the order of the pole turna cut to be

cqual to the Pebttl aummber b s the problern id4 to prove that the

2t
2 =
algobrale cohomelogy classas Span HEl["k’:I[ii .

For ethio we can raplace n by ite multiple q + 1, wharn q = pu,

bocaysa Vgt 1, r, p! deminates Vin, r.pl aa the map

1
Ij —_ Kj% ghows., This gives ua the advantage that our hyper.

puerizce
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haa & large group of avtomorphliams, namely thoae induced by the group U

of projectve trenaformations

% _"Z -
3 i i

wheta i_'ajl] is a matrix in IF 2 which is unitary sdth respect to the
conjugation a —3 2 = art, q!ahn Therapaon and 1 proved that the
repregentation of U on I-_lé'i[?} im the direct surn of the trivial representation
and an irreducible one, and tha required reeult follows caaily from this.
Incidentally, the non-trivial jrreducible representation in guestion, which

ia of degree q j:l:-_ll . a¢ems to ba the irreducible ropresentation of
lowesnt degree > 1 of the group of (* + 1) X {r 4+ 1] ucitary matrices

{aijil with a € IZI'?‘3 , T add,

i

In came (L), t:e order of the pola turna out to be equal to the rank
of Q’i{f’} for the surface ¥ in charactoriatic zare defined by eguaticon
{13} . ZSince tha rank of {E.] can only inereaze under speclallzatdon
{lock at the intersection matrix} , equality {1Z]) wmust hold , Tha
computation of the rank {(Picard number| Ln characterigtic zerc ig made with
the aid of the Lafachatz theoream; It turne out to be poasible to count the
dimenslon of the apace of gaticnal cobomology clagees of type (1,1} hy
ragarding the cohorology 19 3 representatien space for the cornmutative
—it ti}tl . Wwhere E? =1,

. o
'D. I‘l,and gl % kave

group of autamorphiama of the form Ki

0 ¥4 2 r, Therpolntias that the spaces H H
no common irreducible constitwents. LIf wa zagume the Hodge conjecture then

we ¢an tréat casa Il for arbitrary r = 1+ 1,
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d 4, Connections with zatas (finitely penerated ki, Let us turn now

to the cage k is finitely genarated over the prime fleld, rathar than finite,
We can then construct a projective and smooth morphism £ 1 X — ¥

of achemas of {inite type over X , with ¥ regular and X irreducible,
whese genaral fiber is our glven morphismm ¥ —-# {Spec kl. (The casc
which hag been studied glavsically is that in which k is an algebrais
nurmber fiaid and Y is an open subset of the spectrom of the ring of
integers of k such that V has '"oon-degenerste reductlen’ at all pointa
af ¥ ,} For each "closed' point y € Y we let ‘In"1jlr {rather than the
conventlonal Hyl dengte the Hber f-lhr] « and wa lat kiy) denote the
repidue field of ¥ , which 18 finite with (defipdtion) My elerments, as Serre
mentioned in hie talk. Thus tha schemae "-FY owver kiy), and the corredpond-
ing "geometric fikar" T"Y DeeET I-r.l[_ﬂ r BT2 38 Jdigcussed In the preceding
gection, with g = My, E:-:presﬁing the zcta function of the scheme X

a8 a product of the zetas of the ciosed fibers wa hava

(14} E{X,s) = —F-T EIVFI a} .

veETT
v eloaed

Expressing the zeta [unctions of the Bbers in the form {11) we have then

B.is) ftay ... E_ La)
{153 (X, 8) = —° 2 2d .

L 2 VRN TN £

whers we bave put, dor {0 < 1 < 2d,
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|
(16} tay = TT .
l}i yEY ¥, {9

¥ cleped

The F'hi[t} are of {ixed degree [sae below) with reciprocal rocta
-;1i_ of abaslute value 111“-‘:,1-1'1‘IIIIE {recall that we zasume conjecturs (4} of
B 3). Therefors, by theorem 1 of Serra'a talk the product {16} COnVarges
absciutaly for Ra > dim ¥ + _12.- « It is conjectured that the ]_51 can
be continued moremerphically in the whole a-plane {ef, Well [11]). Ar
pragent the continuability 1 known only in very specizl cases {sge Shimura's
talkl. From Poincars duality, we have @ 3&"{{3} & §i{s -d+ 1].

if wa replace Y by a non-empty opan subschame in (] 6], wa
divide & ilfuil by a product which convergens for Ro > dim ¥ + EI- -1.
It follows that [loscfar as il le extandibla there} the zeros and poloa
of _E in the strip

i . i
— - = —
Z 1 Hg < dirn ¥ + 3

ditn ¥ +
depend only on V/k and not on our choice of X/Y . It fa therefore natural
to try to relate the ordars of the marca and poles of ﬁi at critical places
in that szitieal otrip bo other invariants of the variety V/k. The orlglaal

ldea in thig directlon {a the following striking

CONJECTURE of Birch and SwlonertonsDyer: The rank of the group
of k-ratiomal polote oo the Ficard variety of ¥ is cgual to tha order of
the zerg of ﬁl{ﬂl 2t 8 = dim Y [and of -‘_ﬁzd I{sl at 8 =dim X -},

by dunileyt,

If k = &), and V is an ellpHe curve of the iorm 'fzm ::S-Dﬂ:.
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D & B, there is overwhelming numeriecal evidence for the fact that
ﬂ?] {1} = © if and only if the curve has a raHonal polnt of Infinita order
{cf. Casacl*s talk), In case of finite k, the conjecturs s trivially true,
amaunting to 4 = 0.,

I would like now to diecuss the foliowing generalization of [12) :

CONJECTURE 2: The rank of Eﬂ_l{\f]l 13 equal to the order of the
pole of IElzil.'n] atthe polant 8 = dimn ¥ + i [ and of vﬂ}zd_ﬂ{u} at
B = dim X-1, by duality],

Notice that the poaitdion of the pola considered here is on the boundary
of the half-plane of convargence of the product, ao that conjacture 2 can
be given meaniog even without supposlng analytic continuation . In this
raspact it ia different from the cenjecture of B, and S5-I ,, which pra-
FUppoeed dodlykic continuation a distanco of El unit to the left of the line
of convargence., On the ather hand, the two sgonjectures are intdmately
related, atleast ingofar as the case 1 = 1 of confacture 2 is conceraed,
Thie L8 not surprising, bacause both of them relate the order of 2 function
3t & = dim X -1 to the vank of 2 group of diviser clagaes. For exampla,
let ¥ =-—= W be a morphism of varieties of our type over k, whose
general Bhar "-"wj'kl_'w} ia also of gur type, Ii k ie finite, and W and
¥ . 8Fe curves, then It is easy to sea, as I mentionad in Stockholm [7] ,
that conjecture 2 for V/k is equivalont to tha conjecture of B, and $-D,
for Vw.-"k{w'l' = In the general simmation, the two conjecturss, for the three

*
variclea V/k, W/k, and "-"w,.-"k[w] are atrongly intarvelated

. ]
Fe2 remark at the end of the alk,
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Conjectura 2 has been verified in some special cases. If k s a

number field and ¥ the surface X° + }{n non 0, than Weil

¢! 1 3
[10] has computed ﬁzis} as A Hocke L-gerbea, Itgpeleat 8 =3 1

+x‘::,_+x

turns out to be equal to the Ficard number of V if k coptaing the

Zo-th roote of unity, The corresponding atatement 16 truo for the hyper-

|
Henry Pohlmann has verlfied conjecture 2 for £ = 1 incase V ie

©
surface 4}_':‘__'3 x 0, ¢ odd, if Hodge's conjecture is true for it,
an abelian variety of C.M. type in tha sanse of Shimura-Taniyama [13].
It is intereating to consider the cage ¥ a number fald, ¥V = £ the
product of an elliptic curve E with dtself m times cver %k, For each prime

¥ where E has non-degenerate reduction, put

CEE .0} = £ . )
{0 -ny®y {1 -H%'E}

and let

g = oW b it o
Then wa hawe

- ™
(17 $.s) =TT (Li-zu'h -3 })[”H"ﬂ” .

oLV
whera
, 1
1 = T ’
ey L (s} =TT el and L (o) = T -8 %0 - EVNG S
¥ Y y ’

for v > 0O,
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In caee E has complex multiplication the Lutﬂ} are Hacke L-serles,
P F

vwa have rank fR {¥) = i,r:ll » aad conjecture £ ie ensily checked for

all i,

Suppose now that E hae no complex multiplication, Then one finde

m, ! m

m

a9 rank &NV = ranx (1N

Lat e, k& the ordor of Lp':ﬂ'.l at = 1 . Asgsuming eonjecture 2, wa

gonclude frorn {17} and {19] that

= = = = pr) a
c 1.::2 l,anc‘lczu 0 for P i

Cn the other hand, arguing formally from (18) (I hawve not inveatigated
the analytical subtlaHes--this 15 all heuriatic) one Hnda for
0 < 3 < b £ 7 that the denaity of the set of prlimes y such that
. b
a < @yl < b iagiven by L ile)dt, where

_ 1 f
iy = p= {:F:nab't,

=0
Assuming f{t] 5 fiv- 1) we conclude that €, & for v odd, and

conaegquently
] 2 2
flt} = 7 (1 - o8 2t) = -_F;ain i

I vndepstand that M, S5ats has found this uhlzdistrihutinn iaw experirnentally
with machine computations, Conjecture 2 seems to offer an axplanaton

for itl
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I should aay partial explagation, because the assumption f{t} = f{w- £}
had no justification; 1t amounts to conjecturing, in this special caga, that,
furid i, tha fuaction § itu}l had no Tero dod ow pole at a = EmY +-ii ‘
that is, atthe real poiot on its boundary of convergenee, It is tempting ta
tnake that conjocture In generxl (after all, in odd dimensions there are no
algebralc cycles to create poles). Howewer it is false; over a finlta
Beld with qz elements it ie easy to make varifeties {guparaingular eliptic
curves {or example) for which q is 2 reciproczl root of Pl . Parhaps
the conjecture is true sver number fields. I have oo idea what to axypack
ia gencral,

Anather queation L would like to raise concerna zlgebralc gycles an
abelian varieties. Let A be an abelian varlety of dimension n over §.
Is it true that the ring of rational cohomolugy clagaes on A of type {p.p).
0 £ p £ o, is generated cver @ by thoae of type. (1,1) ¥ This
statement implies both the Hodpe ¢conjecture for A . and also the fact
that every algabraic cycls is homologically equivalent to a rational linsar
combination of interscctions of dvisora, Mattuck , [12], has proved that
{*) holds "io general”. It was by verifying [*} lncaspof & = E
{pavwar of an clliptic curve) thatl was able to computa the ranks of the
groupp a.iﬂ‘:m] in the example diecusssd above. ln termo of a pariod
rmatrix for A, the statemont {¥] translates intc a completely down ta
sarth question which could be explained to 2 bright freshman and which

should be aettlad ono way or the othar,
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The laet thing I wish to discusas ls the relatlon babtwesn conjectures
1 and 2, We have already e=en their eguivalance (module [a), (b}, (<), (4]}
in cape k ig finite, For ie@nite &k, the rokation lovelves Taniyarma'a
1dea of Leserles attacked to _f-ndic representations {cf.[6]L

Ag Mike Artin explainad in his tfalk, it follows from the theoraime of
apecialization and base change in atale cohomalegy that the cohomelogy
grioupa H_Etﬁ?} are independent of y for y € ?.E {here the Ty, cdenctas
the locus ¥ F O in Y}, To make the staterment preclee, one chooses a
“africt localization Ef < k of the local ring ﬂ? of v on ¥, and urea
the residus field of ET as the algabraic closure -I-i_[';rT of kiy). The
decompoaition gubgroup ET = {{'r £ G{Efk‘ HE]" = ETY } le then mappead
homomaorphically onto Cik{y)/kiv), the kernel belng by definition, the
inertia subgroup I‘.-" of y. A3 usaal, everything is determinad up to
eonjugaticn by y, but actually depends on the choice of '5? + Which playe
the role of a path frorn the géeneral geotnetric point , spac [ » to tha
special one, spog Fﬂ'_ » Thie "path" detormines an iromorphiem
{20) HLAF )~ HYW

Ly = f{

which isg compatible with the operation of D? .« Inpardeular, the inerba
group 1}' cparates trivially on I']E[?I forall y £ ‘f__E » @o thet in its
azton on HE{?] . Gi{k/k] opsrates through ite quotiant group, TFI'I'I' g ¥
the fundamontal group of Yf .

For sach closed vy € ¥ : let E‘f ba tha fmage in ﬂ']{'ll:ﬂ_} of an

£

invarese image in D!f of the canonical geanerator E!F of G[lrﬂfkw}] .
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{Thua, -ﬂ'? ia determined by y wup to conjugation, and in case k iz a
numbe ¢ field, {tie a "Frobenlus saubesttutdon" in the clagsical sende. ) The
compatibility of (20} , togother with the {act that E;I vparates on

l:l}_lﬁ} adg w? dues (sce p. 11), shows that the polynomial Plh 1[1:} in (L&}

ia given by

-1
A = -
{21] P'h i{l:]l det {1 w‘.-'- i d ]

where U? i f denctes the endomerphism of HE[T"] Induced by the apetration
E

of E? « Thud, the functon ;t:i 15 completely determined by the scheme Y,

togather with the £ -adie rapresentations H,ili’{ﬂ' of the fundamental groups

fr 1{? } . We are therefore led to the following genoralisation:

£
Lat Y be s repular leveducible scheme of finlte type over E  with

functlen field k. Suppese for cach prime yi # char k we have n finite

dimenaional veotor space Hé.- ayep ﬂ,f cé-n. which 11‘1["1':&1 } cperates

continuoualy in such a way that the characterdstlc polynomial
-1
{22} F {t] = det{l - tio o,
v {1 - a7 [H )

haa coafflcionts in E , is independent of ¥ for ¥ € '!E"'E » and has gomplax
""reciprocal roota™ of abaslute vaina N-,rp ¢ Whare p 1l a real sumbes

Independent of ¥y, We then asay that H = IH£ } is a syatern of representationg

of weight p over Y,

Given such a systeir, we put
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1
{23) LiY,Rie) = T — r
v E¥ F [Ny '}
yelogad

this product being abaclutely convergent for Re > g + dim Y, Natice
the analogy batween thle definition and Artin's defnition 0f Lafunctions
(cf. Serrc's talk, formula (9))., Comparisen of (L&), {21}, [22), and (23)

shows thak
{24) $iar = L1y, HDm

ld an Li-geriesa for the system of representations {HEEEI} of weipht %
ovar ¥ , Twiekng a system of ropresantatons by m  decreases its

weight by m, and translates the corrcspending L-functon 1 anite:

{25] LIY,Hitn);a) = Li¥,H,5 - m) .

Thus

B is-1) = Liv, 52 : e

belonge to the representation syatem Hﬂ{?}{ll of weight 0. Conjecture
2 atatens that the pole of this function at 8 = dm Y is of order rank E?Li'["-"l .
Conjecture ] gtatas that rank ﬁ,i{\"} is equal to the dimension of the suba
space af Hziﬁ]{i} which i fixed under wltT} . 1f wé apsume tha ﬂlf‘i’E}-
module s H:I'E[T":— are pemiasimple [ae Serre and Grothendiack believe) then

the equivalence of conjecturea 1 amd 2 would follow from
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COMJECTURE 3: Far acrme class of rapresentation syetetns H = '[Hf:l
of welght @ over Y, including at least those of the form H = tH_Ei{TF]{iJ],
the ordar of the pole of L{Y,H. a} at 2 = dlma ¥ Lp egual to the number
of times the {dentity representakion ogcurs in HE (thls belng independent
of £ ).

©f course, conjecture 3 ia true for ordinary Artin Leseries {ci.

Thaorem b of Serre'a talk), and for Hecka's L+neries, I conclude thia talk

with tha hope Lt ja true ln far greater genaraliby,

Afterthought 1! Un page 1, and hence throughout, it wae intended that

¥  ba irreducible, This was not egeontal, but merely to fix ifene and

elmplify etatements.

ﬁfterthu&ght Z: A elager look 2t the gitwetion ¥V, W, and vw

discuasaed on page 17 leads to the following coneideration, Lot A be a
regular schame of finite type ovar £ whoss zota function L[X;3) ecan
ba meromorphically continued to the point 8 = dim X - 1 . Lat ={X)

be the crdar of [ {X,s] atthatpoint, and put

-
2{¥) = rank Hu-[':l{,gx] - panh HI{Z‘{,Q - alX]

%
% ]
If onet romowvas from X A cloged irredacible gubacheme £ of eodimension 1.

then 2{X} doews not change, Thue, ={X} la a birational invarlant, and
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depends only on the funetioo feld of X, Suppose new i H =3 ¥ with
general fiber ¥/ k  ip as discuecsed at the begloning of 4 {so { projectve
amogth, Y regular, and v irreducible,) Then it is eamy to see that any
bwo of tha following atatements imply the third:

(i} the ponjecture of Birch and Swinnezton=-Dyer for "-"fk .

{ii}) the coojecturs 2, for § = 1, far V/k,

fidd} ={X) = =(Y).
Sinca wa have ={X} = 0 if X 15 the spoctrum of a finite Seld, or of
the ring of integers in an algebraic numbet field, and since =(X} isa
birational invariaat, we can conclude =(X) = O for 21 X if {i} and {if)

hold for all V. We are thue led to

CONJECTURE 4: 1f X isa raegular scheme of finite type ovar £,
thon the ordar of {{¥,8) atthe polot & = dim X - 1 is ¢qual to

(1§ * 1 x
rank H (¥, O} - rank H(X, 0.1,
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ARITHMETIC ON APELIAN YARIETIES,
ESPECIALLY OF DIMEMNSIORN ).

J. W, E, Cansels

An Abelian Varicty of dimension | defined over a field k is just an
elliptic ¢urve together with a point © on the curve, all defined ovey k. The
Law of additian is that x*y = 2z, where x,y,z are points oo the gurve
(oot necessarily defined over k), if the divieor congizting of x and ¥y,

each with multiplicity +i, ie linearly eguivalanpt on the curve to ¢ and

I

Every elliptic curve D defined over k determiner an Abelian
¥ariety of dimengion 1 (C 1 2) defined over k which iz unigue {up to
birational eguivalence over ki, namaly itz Jacobian., The usual Jecobian
map of diviesre of degree 0 on D iato points of ¢ gives D a atructure
# of {(principal) homogeneous apece over {C 4} defined over k. MNamely
wa deline k +y = Z, whare X,£ are on D and y is on T to mean that
tha divisor consiating of X with myltiplicity +1 and Z with multiplicity -1
i mapped onte y by the Jacobian map. It is readily verified that this doss
give a bomogeneous gpace defined aver k.

Althgugh D determines its Jacobian {C,ol udoiguely, the Jacobian
map, and sa the structure ¥ of homagenecus space, ls not unique, Clearly
Biven such a structure we caa define another by making the sum of X and vy
tobe X +[-y). Exceptin the apacis! case when © haa cetnplex muleipli-
cation by roots of unity defined over k it may be shown that thays ave in fact

Jjuat the two siructures of homogeneous space on D,
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An we are interested oaly in things up to birational equivalence defined
over k, Eta'l,r that two homogeneous spaces {0+, M) and |IDLH'"Y arein the
aame class if there is a birational equivalence gver k  which takes D into
D' and M into W' {in &n cbvious sens¢}. In characteristic [ the clasass
of homogeneour speces (for given k and Jacobian {C, o)) can be put into
1 -1 correaposdence with the elemants of a cohomology group H’ (T, ﬂ-}v}.
whara T ie the Galois group of the algebraic closure E of k over k
and Edlv is the group of points oo (O, 0) defined over %, The right
cohumolagy group to take hope is not the one given by ail cocycles but only
by the cocycles which are dafined over a finite extension of k, Le.,

RUE) = dm WU ) -
where ¥ ruas through all finite rormal extensions of k. E (D,L} ta any
hotrogenecus space the corrvesponding elernant of Hl {r.ql ig given by the
cocycle J0L-0L= Ol, E Fﬂ} ic€T} where O is any paint on D defined
oveTr K and the subtraction ig that given by the structure M of homogeneous
space, The group law oo EJP gives 2 group law on HII[T,EIE] and mo A grouy
law oo the set WO = WC(C,k] of clapses of homogeneous spaces. By
conatruction WE  ia a torsion group, This is just the group law defined by
Veil for classes of homogeneous gpacee without the benefit of homological
algebra,

Now let K be any overfield of k. Anything which is defined ovar k
iz aleo defined ovar K  and a0 there is a natursal map

wWE (S, k) — WO IC,K)

which i aapily seca to be a greup bomomerphism. Yhan k is an aigebraic
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number field and K = k_ is the completion of k with respect to a valuation
v wa cail this map the localization map at v and dencle itby j,. The
intersection of the kernels of 2ll tha jocalization taps j, 1# the Tate -
Safarevi¥ group i = W{C, k), which playe an important and atill mysteri-
cuza role in the arithrmetical theory.

I devated tha greater part of my Stockholm {hration to ti and 5o
propeae ooly to remind you of a few aalisnt pointe before I go on to the main
Logde Af thie talh. Bines it ie a2 subgroop of WC, the group MM is a torsion
group.  Many cases are aow hamen whers tlh roanmioea ~d mors than one
elemant, However, it i gasy to see the [ fm W s finite for sach praalilvs
integer m. There iz a lot of numerical evidence, but oo prooi, that L
Jdeen nat contain any iofinitely divisible elements except 0 {and so that the
primary components of L are all finite groupe) and there is indirect
evidence {gome of which will be presented below] that L) iteelf is [inita,
Finally, thers is a skew - gymmatric bilinesr form defioad on Ll with
values in Of 7 whose kernel conaiste precisely of the infinitely divieible
slermants: 5o if thete are no infinitely divieible elements, the order of each
primary component of ([l is a aguare. The order of I, if finite, is 2180
A Bguare.

In my Stockhelm Oration I reported ratber Lriefly on some numerical
work of Dirch and Swinnerton - Dyer and on the conjectures they had made
on the basis of it. In the meantimé the poesition has bacome a little clearer,
the conjectures have been made more precise and the evidence more compelli

he conjectures seem, howevar, to ba as far away as ever. In dexcribing
Froofs of ©

this work ! shall be guided by the logical connectione that have since been



nated rather than by a strictly historical order,

The success of the theory of adeles and of Tamagawa meagure in the
theory of linear slgabraic groups suggests that these concepts be applied to
algebraic groups in general, and, in particular, to Abelian varieties. As
before, I conline atiention to dimension 1, Let (G ,E:In be an Abeligo
varioty defined over an algebreic numberfield k. Feor each valuation v of
k we denote by EF’,‘, the greup of points defined over k,, endowed with the
v - adic topology. Theo UJI-,., ig compact bocause C iz complete. 1t is
natural to define an adele 1o be just an element of the compact group H N
{with the product topology ). There is a natural injection

op—s [0
of the group OF of points defined over k into the adele group: the points

of the image are the principal adeles. The subgroup of principal adelez ie

nelther digerete nor ¢losed, in genaral, which is a contrast with the iinear
algebraic group case, Jodeed it is ac only if OF i finite.

Lel o be a differential of the firat king on < defined over k, e.g.
Enr = y‘ldx i C is given by an equation

y% = x3_ Ax-E (A.B Ek}. (L]

A% in the linear group case &3 gives a normalization of the Haar measure
&n 'Eg’q 18 a way o be degcribed. Suppose for mimplicity that C  is given
By (1} and that o = }r‘ld:-:. Then the measure m, (E) of a subset E of

0« is just the intepral

|
I dl
fx,y3eE |¥h ¥

where -d:: ig the Haar measure on the additive group k., appropriately



normalized, The normalization is

(i} I d:x =1

=

4 v is non-archimedian, whare E;.r is the pet of v - adic unite.

{ii} d: iz the ordinary Lebesgue measure if Ry, = g and twice
the ordinary 2 - dimensional Lebeague measure if k, = E

It is pratty clear that the measure m, &0 defined is invariant under
the optration of the group Ef},., . We shall ke primarily concerned with the
rmeasure of the whole group, If C ig taken in the form (L} and v is 2
non - archimedean valuation such that (1} taken modula the prime ideal
belonging to v is an elliptic curve over the residue clase field, then we

nave
(0} = —— €3]
I'I'.I..H. 0}1" - ?E.{'\I'I'

with tha above choice of .., where Nn.r is the number of points on the

Teduced curve and ?’E{v} ie the number of slerments of the residue class
field. For the remaining finitely many non - archimedean valuations ™, [Dérv}
is a rational number which can, in any individual case, be found after a
trivial, if sometimes tedicus, computation; and v for archimedean
m?{ﬂ}"r} in readily expressad in terma of the perivde of oy (in the
<lakgical gense: we are now dealing with R or E.’I.

The above dedinition of o, ie oot intrinaic, since it depends on the
theice of the differential « of the firsc kind, o o' is another such
differential, then o' = 4 forsome X E k and so

miy{ b= |a', myt 3,

where m_:, ig defined in terme of o' as ™, im in terme of wr. Hence
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_1 -1
T = i,k = B om0, {3)
all' v
if the product convarges, is indepencdent of the choice of 1 and 80 depeods
only un C #and k. It is the measure of the eatire adele group in the
product - moasure of the e, {the Tamagawa meagare} (i it exisls ¥.
Birch and Swinaerton - Dyer conjecture that it iz always poasible to
gove a senge La the right hand side of (3) as a positive real number or ¥oa,
poseibly by interpreting the product in mome heurigtic way (aee below ¥

They than conjecture, further, that

S {#iep )P

whare F{S] danotes the cumber of elements of 2 eex 5. This conpjocture
presupposes the conjecture that # (i) ie finite, and the right hand pide of
(4) ininterpreted 29 0 if #LO0) e infinite.

Pirch and Swinnarton- Dyer started off by considesring the bebavior of

the partlal products of the product
) Ny {5)
v "gaod"  ri{v)
for certain apecial curves O, the ground field beiog the rationals, To them,

ae experisnced computars, the resnits wers sufficiently promising e call for
further iavegtigation. They then noted that for a “'good™ valuation v (i.e.,
A A - ar~hamedeann valuatina with a E‘ﬂl}d reduction]) the local =ofa - function

in given by :
: A8) —
AR SURF PO ILE SPNT T TLLY

whn‘rt-.

(a2 r (0, -relvh- 2w )™ ¢ (e ) 728,

£, (1) = n /78(v). (LY
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A conjecture of Hagee {whichk is a special case of a latar conjecturs of ¥all)
im that

T g (s,

ki
which la convergent if the real part of 3 is large enough, is analytically
contingable oveér the plane ag a meromorphic function. This conjecturs

lmplies, in particular, that

sy =TT, ST (7)

defines a meromorphic function on the whole plane and, after {3}, (&), it

ir natural to put

-1
T = .
Lesye F1 L Cmyfgp, )
(v is "bad"™ if it isn't good ). In the particular case when  has complex
muitiplication it was shown by Deuring that Hazea's conjecture is true, and

that tn fact L{z) is a Hecke L - function with Crissenchzrabitira, [ This

g a apecial case of later results of Shirmura and Tanivama.) ¥irch and

J—y
2 -

Swinnerton - Dyer then rnounted an all - gut attack on the apecial case k = )
and O piven by:

¥? = x¥ . b, De B (8}
{g¢ complex multiplication by i), They managed to find an expregzion for
L {1} as afinite sum of the type

E £ (&3 L£04) {9}

o
where ¢ it a certain function defined on the curve :|.r2 = 4x3- dx, 1% rune
through the group A of all Dt - divizion points on this curve and ¥ is a

character on A, Application of Galoia theory to this formaula ehows that

T ia rational and permita an estimate of the denominator. The aum ig,
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howaver, far toc loeatheaoms o be evaluated by hapd. Pirch and Swinnerton -
Dyer uned thw machine to evaluate T for a large number of values of [
and algo to find Egr. {Ae I explained in my Stockhelm: Oration there is no
gure - fire algarithm for finding EI? but experience shows that it can weually
be done, ) They found the foliowicg experimental facts, both in accordance
with the ¢conjecture [4]:

(i} T = 0 if and only if #{CO}) = @

[ T is always g nomnegative square.
Thie tallies with (4) because, aa [ explained, #{ ') mmurt be a parfect
eguare if it ia finjte. Further, the actual valucse of T obtained agree with
what is known about W, {This ls precious little except for the 2 - and 3-
components, Some of the values of T suggest that [1] must contain
eléements of grder 5 or 7 bul no one has yet found a [¢asible way of actu:lly
exhibiting them bacause the numerical work would be xo difficuilt. )

Cite recently I have found other evidence for {4} by considering
a pair ITZ1 R Cz of iscgeosus curvas, F., K, Schmidt showed that two
elliptic <urves over a finite {field have the same oumber of pointa defiped
over the field, In an obvious notgtion (2} thern implies that

_ M Nay
mﬂriﬂ;‘l’lvl - THv) - v} - “%W}’zvl'

for all except a finite number of v and so that

i) | opic fC.] f[eay) {10}
all '« 1 < ¥
im well defined., It can he ghown that

#{Dgfg.f'vllh}i{{'?ghz“{IILUIL,,..]]
*'“?1*’%'-"}3““?1%1“““ﬁh—z}

TIC | iCs) = fLL}



whe re viCp = EE. Vol CE - O,
is a conjugate pair of isogenies and where, say (L) I"’l denotes the kernel
of the map le — L'-I.E induced by v, . Thiz formula is proved without
any hypothesis aboul the finitensan of l? and [f: all the terme on the right
hand side are natural awmbers. But now (3} and [ 1)} imply that we should
have

T{C) IGE}I =TIC, HTIC,)
and in fact [ L1) ig just what one doee get on taking the ratios of the right
bhand sides of |4) with < = CE ; EE and anting that

# E{mlivl] x § iy fvy L"'E]
by the functorial properties of the bilinear form on [4] which 1 crentionad
at the beginning.

It 38 worth noting, too, that the factor #( () in (4) is guite apa'ugous
te a factor which occurs in Oma's formala for the Tamagawa Mumbers of tori,
Um the cther hand the factor & {l.‘.I;I-'lz eseme to e rather purprising ae Lne
results for linear groups are for the Tamagawa measure of the quoticent groug

i:adelen F mogule privcipal adelesgiand rather suggeat that one shoula get onty
F :U}] - It would ba interesting to gat a conjecture [ar all algebraic groups.

There is a second Birch - Swinnerton - Dyer conjecture, thig time about
the rank, i.z., the auttber of genarators of infinite order, nf the finitely
genexzated group 0} { The finite geaneration of ﬂ;lr is, of course, the
dMordell - Weil theorem, ) Their preceding conjecture implies that L{s}
given by (7T} has azeyoat ¢ =1 i and only if tha rank g ia oot zero,

They conjecture furthar, that the order of the 2ero ie just g. This
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conjectura has been taken up by Tate, and it is now a special case of a really
grandiocse conjecture, but 1 am not competeat to digcuss theae higher flights
of fancy., Ome way of checking the conjecture would ba to evaluate the
auccegsive derivatives of Li{s) at e =1 and compare this with what iz
know i about 0}, but no one hag yet had the fortitude to attempt thiz. Howewver
recently, FPirch, following up a euggestion of Shimura, has noted that at least
in the apecial caee {8} one can determine the parity of the arder of the rero
of L{e) at s=1 from the functionsl equation of the L - function {owr
notation ig ynorthodox, our s=1 corresponde to 8= 1f2 on the critical
iine in & properly chosen notation}. ©On the cther kand, a simple argument
using | 11) gives the parity of g under the conjecture that |'.L|'1. L|'_IE arc
finite, And Eirch showa by a rather tedicus elementary transformation thal
the two parities are the same,

This is ouly &2 report on work in progrees and has the ustidyness ¢, ..o
of auch a repart, It seemg to me that the evideance far the Birch - Swine.: < - -
Dhyer conjectures taken all in all is overwhelming but it seems likely that

eapentially oew ideas will be nesded to obtain proois.



SOME REMARKS CONCERNING THE EETA FUNCTION COF AN

ALCEBRAIC YARIETY OVER A FINITE FI1ELL,

B, Bwork

iet us bagin by considezring an elementary application of peadic

anaiydie to the theory of the zeta function. How does one know that the
inveras voota and poles are algebralc integers. The thecorem 19 due to
Fotoa (Acta Mathamatica 1906 p, 364). Euppnse'ﬂ'l[ 1 - Eitll.f' ]T{I- - Bjﬂ =
I + et + ¢ I:‘71 + ... where the o and 3. are finite in number and

] z { }

are algebralc nurnbera while cr,c pre rationpal integers. If p i3

zp- 18w
any prime conaider tha right hand side when the p-adic valus of ¢t ia
strictly lesa than § . Claarly the geries convergos and tha limit haas
p-adic velue 1 . Henge neither ﬂ.i-l nar B;l gan have p=adic walue

etrictly leas thae ! and thus each o

; and Ej muet ke an algebraic

integer,

2 commuon phanomenon in p-adic analyeis is that if a functien g(x) s
apalytic in some region then the functicn g{x]fg[xF} has an analytic
conkinuetlon t¢ & somewhat larger region, Some examples of this will
b given

L/

fa) Let m ba pninteger prime to¢ p  and consider gixk = x
smalytic for x close to ! (g{l) = 1), then glxl/ . p, = -pl/m
which is rational if m divides p « 1 and whils glx) converpges only
for |x~1]< 1, gix)/g(x*) has a contlouetionte all x # 0. Further-

more whap ¥ = :p:P the ratio gives tha mth power residue in the fleid

of p elameots,
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{b] A& less trivial example is given by gix) = {1+ :-r.}l fon whe re
m i5 g abova., In this cape gtx},-"g[xp]l had an analytic continuation
(if m divides p = 1] to a disc properly contaiping the wnit digk ix| <1
from which we must remove the diak | x -1| < 1. Here ggain the value

of the sxtension of the ratlo at x = xp. x # 1 iaprecisely the m

povwar regidue of 1+ x,

{c} One of the criglnal sheervations involved the hypergesmetric
o

-1 ;
perina F{ % . %, 1. a) = E ( 2 ,'lE ¥ which convergea ior |aJ<1
{p # 2} and hare tha raHquu i '% . %. 1 phl'.-"rF[IE ' '}'1:.- 1, 2% has

an analytic continuation to the "closed" unit diek provided yon delete the

digks definad by
(e-13/2 -}

| ¥ ;51?'15
520

{No doubt the repglon of analyticity is somewhat larger.) According to 2o

< 1.

unpubl shad thecrwn of Tate, when Y = }.,q . tha value assumed by the
ratlo 18 one of the non-trivial roota of the zeta funcHon of the
reducton of the elliptic curva -,rz = xfx-dlx - 3] provided the Hasge
invariant ie oot zerd,

(3] The most itnportant example ia given by the caae gix} = expl-x)
where 'rfp-] = -p. Hers g[x],fg{xpl = explrix - ')} converges for
ord x » -[p-1}/p and the ratlo may be viewed a9 the compoaition

glx - xF) $f Ix| < 1 butnetif [x| > 1. In particular

{E{Hl'fg[!pﬂp = axplprix - )] = giplx = xF1} may be viewed as tha
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composite functon for |x! = 1 and hence wheo x = %", the ratic

g{x],.-"gl:xp‘l takes on the pth roots of unity as wvalues., In this way an
analytic repressntation of the additive characeeys of finits fields ls
cbtained, Aasida from the estlmats for domain of coovergence the phove
rermaing valid if & is replaced by g? whare Ip-m] =< 1.

Wa now explain briafly how example {c} czn be generalized for all
non-ginguler hypersurfacces.

Lat [ be the sompletion of the algebraic closure of the p-adic
tationale. Let f{y}! be a hormogeneous polynomial of degree d in
x = [xl'""“n.-lr]] with coefficients in the ring of integers of §I  and
suppoas that the reduced hyporsurface dafined by 1 = ¢ med p ia
nooeingular and in peneral pesition {i,e,, the Intergecton with each linear

eubvariery X = T oann ¥ X = 0 iaagsin nop-aingular.
i 1, i

Let * ba another indeterminate and lat _‘f_{* bo the pubspace of

i 1 o
Q[ » rss s = 1] "opaoned” by slements of type 1/4° whera

= |
dwu. wl + a. o+ wrr+1 +» Lot K he the gpace of alements , £ »

in ,'.f,* such that

Eig-. + frT_ x‘nii‘:* = U r i = ]. -zjquln* ]

o .
E = —_—_ =
where i x I . ii. Ei:l.' zod y_  simply means diacard all

termse of x ﬂfiE *  which cbviously da nat e in :L::r ®  The dirmension of

K le d" {ior this it is encugh if { 13 nonaingular in characteriatic zoro

and in ganeral poeitica in that sense} and each slament of K aatisfies
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ceveain growth conditions (bers we usc the hypothesia in characterietic ph
The zeta function of the raduced hypersurface i detzrminad by the non-

alnpgular endemorphism

B P ﬂigﬂ 9

a¥ = y o o i
exp :-:ui[:u]

af K , whoee ﬁ mapa lfnwinm 1,1":'|=T"|'Ir ; provided the reduced polynetnial
f  has coefficients in the fleld of q tlements, The thectry mey appear to
dapend on the lifting f of I bhutio fact &f P is soother lifttng of T to
i), then there exists a natural mapplng E£* —* ¥ _ §¥axp {w:-:uif - 3}
of K onto HK' and from this the easential uniqueneas of tha construction
follows. This mapping can be checkad directly but to obtpin inslght we
suggest the heuristic argument ghat D% is "ezsentially”

uxp{-ﬂ'xuﬂxﬂn E o nxp{rxﬁﬂx]} and that 0+ {p "esgentally"

1
expl=mx flxh) 0 $ o exp{7a Hx)) -

A more systemabic examination of this mapping of K onta bK' laade
to the proposed extension of example [c} above, We Arst consider a

family, f{x, T, of hypersorfaces of degree d in x

-Il-l--x

1 i+ ]

parametrlzed by a new indeterrminate, #. Ap before we construct KT

1 1
but hare the alaments Lie in G{I)[[ —: P e ]r] . Let BR{I} b=
4] 1 ol

the respultant of Elﬂx,ﬂ . ..,Em_iffu,r_l , viewed as polynomiala in

xl'"”xrr*l « Wa conatruct a basla of I'(T of the form

1
'Eu,T B gllr) z wr w w
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indexed by u runping through a suitable indexing aet, Here gil} isa
fixed polynornial and Gu‘w{l"_l € O[T forall u, w and aslde from
the zerva of g(I} [ which ahall be ignored in the future) the basls can be
speclalized, given aarlea with good growth conditions providad
jR{DIl =1, [T[< 1.

For T close to zeta, {we now dedefine Ky, ag imbedded in 5 "
we have a natural mzpping, ¥_ 0 expf xn[i{x, I - #x. 01} of P-'lﬂ onto l{r
fwe suppose R{0} F 03 ; ralative to cur hases this mapping haa
matrix Cp which satigfies a aystermn of ordinary linear differential

equations with raticnal coefficlents and wa obtain the commutative diagramm

H —> i
0 e
] |
Eﬂ 1 ri KT
where af = y_ o = trx gt T
explar x il 3

Writing thia io matrix form

w -] ¥
ul" B erﬂ-n GT

L
and '-11-. can be ghown to bt holomorphic in » disk IT|< & wheee b > ]
provided the regton [R{T1[< 1 1a delated as wall aa the isclated meron

of g(I'} in the formula for the baeis, If we let K. danote the olements »
1

L
X

pecurring in £% involves all the variahles and if we let I-'Lr- = K'['J"F‘K;"

Ex, of I‘.’T which have the property that no singla monomdal
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than the above theory rermains
A, valid and the Functional equatlon of the zeta functon of the reduced

hyperauriace f(x, '] = 0 where T iz epeciailzed to aay T - T has
bean proved {Un the zeta funeton of a Hypersuefaces 1, Aonale of Math,
1964} by proving that G:.. JE.I.. jg a rational matrix functenof T, J
being a sulkable conatant nongingular matrix,

For elliptic curves, CT ig formally the period matrix for integrals
of the second kind while for the case of a variety of dimension O, 8ay
i{xl,xz.'!":l = :-::1 + T'hi,::n.'l.. xz} =<l , whera b is homogeneous of deg d .
the meaning of Gr [aa eransformaticn of _.ﬁu SBk i—(.l..]l can bo gxplained

ap followg., Clasalcally, let ¥yreant¥y be the zerca of the polynomial
fiy,i, 1 = 0

riewod a6 holomorphic functona of T for T closa to zero auch that

Yj —_— w'] aa I'—= 0 ,w being a primitive dlh root of undty.

Lat PT‘ ke the Vandemonde matrix
Y .
| H 1l = lrzt--lld'l
" T
0y, 1. TH § = 1,200c0e d

A .
then PDET = PT‘ , whiee Fiy, 1,0} = —-E?' flyal: T} . [ultiplication
of d ¥{d-1) matrix by ([(d-1} ¥ (4-1) matrix) .,
Tha ioterpretation of the matrix of rl’} relatdve to our basle in
tha zero dlmenajonal cade should be of soma interest. If T la

spaclalized ac that T o T and T hase cooliiclents in the field of 4

*
elements then n.r. should repressnt the Frobenius operating oo the apiltting



1.

flald of fiy,1,T} owver the field of q elements. If [ has integral

coeffcients say in Z , then the constructicon of the basia of KI- ig

indepandant of p =nd it seermna poasible that if TD is a fixed element of

Z and if for aach prime p {excluding primea which divide R[Tﬂ]. in thia

casn the digcriminant), wa specialize T oo that T = Tﬂ tmod p . =1,

then the matrices np chteined in this way represent in a uniform manper

the Frobenius automorphiema associated with the splitting fisld of

iy, E.T‘DJI . (It need hardly be mentioned thal the theory can Lo formulatad

so aa to avoid the condidon TP = T J. The analytic propertiea of

'5'-!;. may be of interest in the stody of L-series.

An annoying feature of the theery ia the requiremant ikat f{x) be

nonsingular and in genetal positon , Thue the theory éanmot be applied

diractly to alliptic curves in Legendre normal forma and mors seriously

to the cate of geoua 2, To overcoma this difficuity as well as for

intringic intareet we propose to axtand the theory to the singuiar case,

The probiema are homological. Associated with D¥ ,...,D%,, we can

form the peguance

(o1} . lotl}

RS

0 —» [t —fsl —>» w 1
and form bomelogy apaces Hﬂll Fe = K, H":”I[ 2 %, H{z]{i*]. atc,
It ia also of interest to oxtend the notirm af K by defining

an+1

k(! = {g# Ei#intal o £w
1 LI n-l-l
whenever at...ba L, 31'}

and letting K{m} = It l{lﬂ . In the noneingular caee {genoral positdon)
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Hm{i*] = Hmll‘itm:l‘.l = ¢ for ] * 1 while in the general case we can
ahow that
d.lmHm[i*] £ oo

and is wndformly bounded independently of dimensicon and the same holda

{1}, ()

for HY '[K and of course for Htﬂ][ﬁtm}}

. Furthermora wa can show

that if { is defined aver Z {more generally over ring of Integera

(oo}

of algebraic number fAeld) theo the elamants of K have gooad growth

condltions for almost all p, This meana that for almost all p,

&
o o raled on Htm}

and in fact deterrnines the zeta functon of the
reduced varlety, This la of intereat only i 1 ia slngular [or not in
general positiont in characteriatle zern, e conjecture that in adme
formal sensc the zeta function of the reduction of f ig independentof p
for almosat all p if f ia defined over & and it is clear that thig in
cartzinly the czee if dimn H{j}{K[w-l} ia flndte for all j.

la+ 1) is flnite acd the zeta funcHon

(o1}

Io any cage the dimension of K
is detarmined by the actdon of ' on tha eloments f K with good
growth conditlona,

In canclusion I would like to mentlon extenslons to completa
intersectoma and pther varietizs by Ircland (Dactozal Thesis, Johna
Hopking 1964). Of particular value in such extepsions is a genoral
anrmixednega theorerm of W. L. Chow . This thecrem ls of value in
extablishing prowth conditions for K in the extended situations treated
by Ireland. In these extensions the thecory hae reached a peint caquivalant

to Theoram #.2 of Hypersurfacaal (Fub, Mo, iz IHES),and it seema

ikely that the verification of the functiongzl equation may be achiaved by an

inductive argument,



THE ZETA-FUNCTION OF AW ALCEERAIC VARIETY
AND AUTOMORPHIC FUNCTIONS

by Goto Shirmmra

Une of our colleagues asked me not to release the '""lateest" pictures in
this conference, but (o rerun some clasesical ones. Following his suggestion,
at Yeast in the firat half of thig lecture, ] will teil the old story of whal
happened ta the zeta - function of an algebraic curve uniformized by modular
functione. Then I'd like to talk about ite application te the law of reciprocity
in non - sdlvable extensiona, and indicate brielly sotne generalizetion.

_1_- Introduetion. L&t V be an algebraic variety defined over an

algebraic number ffeld k. For evary prima ideal “'f of k, lot v{?]

denote the reduction of ¥ modula f anc k{ﬂp] the residue field of k

modula F + For each p. we can dedinc the ceta - function Z{u; ¥V {P}fk{}):l}

by
2405 ViphiR(pl) = 1. dflog Z{w: V{pMkipht) =2 . N_u™ !

f ‘F' ‘}} ] E 1 F f '|_'_|"|=|_ m'l-l
whe ra N, is= the number of peiotz on ¥ {P} rational over the extension of
kﬁ?] of deprees m. The zetyx- unction of ¥ over k, denoted by
Lie: Vik}, is then defined by

- — n r ‘-EI
Cle; vik) I'IF ZAN{pY S ¥V ipHKip)h.

the product being taken over all the prime ideals ¥ of k. I we agzurne

Weil's conjecture to be true for ¥V, then, [or all except a flnite number of

j»" v Z{u; "-"[ri}fl-:[FH can be written in the form
¢
H.Lljtu] . m oa HE“‘”{u]

Zio; Vi{ipWKipl) = 7
F F Hi;?]'ful' SN TE

F



Here n = dim {V); anc H{Fi} {u} is 3 polynomial, with the constant term 1,
whode rootd are algebraic integers of absolute value H[F b ”E. Moreover
w& may expect that the depree of Hffﬂ ig independent of F for cach i.
Then it willbe meaningful to consider a function

glite; vk = “‘inrp}

whe re the product is taken over all gund £ ‘s, MNow the conjecture of Haage «

Weil {in the generalized gense} may be stated as lollows: For every 1,

.-::i] (=21 ¥/k] ie meromorphically continued on the whole g - plane and

satinfies a functional eguation, For example, if ¥V is an abeiian variety

{resap. a curva), one has
eMisi vixy = TTe det [1-Mytm) m}.}”’].
&

where ﬂ.:r:" ip the N{l‘)} ~th power endomorphism of ¥ [P] { regp, the jacobiar
o \-"{F]}* and M{ [frd?} i8 its - adic reprasentation, Thercioxe, the
determination of {1 a; ¥/k) is, roughly speaking, the dete rmination of
ME Iﬂfl a8 a Ffunction of 7

Al present, thore are twa known classes of varietles ¥V for which the
Hazse - Weil conjectore iz true;

(Il akelian varieties with eufficiently many complex multiplications;

(II} algebraic curves uniformized by certaio automarphic functions
of one variabls,

In the eaze (T}, V is an abelian vapiety of dimension n such that

Endc}{"f} ig ievrorphic to an algehraic number field F of degrec 2n .L

! Orne rnay consider a somewhat mare general casewhere Eodo (V]
is not neéccasarily a field. For eimplicity, we apsume here Endﬂ{"ﬂ’ to
be a field.



it can be alhown that there exists an element u? in Endﬂ{ ¥V} whose
redustion moduls P is 1'?. Moreover, une can determine the prime ideal -
decompeeition of l[,u]-J in F. Theeoe facts, together with a simple clzes -
[ield theoretical consideration, show that F —h- ;.lP ig essentially a Grismen -
character of k. From thise it follows that C“]'{a; Vik} ie = product of 2n
Hecke's L - functions with Grbssen - charactere. Detailed accounts of the
thecry, and partial or related reaults can be found in Taniyama {17), Deuring
[1], weil { 18]}; a comparatively easy and shart degcription i given also in
(14, Ch. 1v, & 18],

Among rmany factors which mapke the caleulation of f“:' poasible in tha
case (I}, it is most important that !Tj;, can be lifted up to an element of
Ende (V] for every }J » Of course we can not expect this in general,
However, in the case (II)., we can show, roughly speaking, that ﬂ'}} * 1T.F=l=
belcngs to the wriginal En&n (V) {for a certain involution *, Thig [act
makes it possible to prove the Hasse - Weil conjacture for the surves of (II}.
To explain this in detail, we need some preliminaries on avtornerphic forme
and Hecke operators.

£+ Riscontinuoug groups and auntomorphic forms on the upper half plane.

Let H be the complex upper half plane, i.e.,
H=1zec| miz)>0].
a b
Bvery & ={% "} € GL, (R} with det{a}> 0 actson H by
giz) = [az +b)flez +d). H has 2 measure invariant under this action.

A digerete subgroup I' of SLy iR} s called a Fucheian group of tha first

kind, 3#f H/I' s of finite measure, Hereafter we fix sucha T, An element
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ab
@ =, z) of T, otherthan +1, is called parabolic f 2 —> {az+b}{cz+d
khas only cne fixed point on the whole - sphece. I that is 3o, the fixed point
should be a real qumber or the point at infinity, and is called a cuspof T,
Let 8 be i cusp of T, All the glerments of ¥ which leave 8 invariant ari
parabolic, Together with 11, they form a group which ig the produgt of
{+1] =and an infinite cyclic group generated by an element ¥  of the form
| -
T = p (D i‘} A 1 with an elernant p  of ELE[R] guch that p{e) = 5.
Let HY bethe undonof H and all the cusps of T. We can introduce a
complex structure H%!T Eo that H%/1 is a compact Riemann surface. To
be more pracise, a baze of neighborhoode of 3 in HB* ip given by
ptlzeClImiz) > r]) for >0, and expl Zmig '(z}] is alocal
analylic coordinate around a module I, Therefore HYT isa compact if
and ealy if T has no parabolic elements.
For every ={a b] € GLa(R) with det {a} = 0, get
¢ d 2 '
L -1
ita,z) = det {a)'7% eard) .
We can verify easily jle,z 'JE = {dfdz)a(z2}, and
JlabB,2) = jio, Riz}) jiB, 2},

Let m be aninteger, An automorphic form of weight m  with respect to

I iaame romarphic functien f on H satisfying the following conditions
AL 2],
fai) ftafz))jio, 2" c £{z) forevery a9 €T,
To describe the copdition {A2), take acusp s of I' and elements 7,0
of GLa(R] as abowve., I { satisfice [Al), the function itplzlriip. =)™

is invariznt under the translation z —» z+1. Hence there existe a function
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F_{q}, meromorphicin 0< lql <1, suchthat E{pizh)jlp,2)™ = F_{c*
Then |42} is stated as followe:

{Az) Forevery cusp 5 of T, F olq) is meromorphic at ¢=0.

An autemorphic form of weight 0 is called an automorphic function. H g

in a maromorphic function on the compact Riemann surface H¥/T' and o
if & natural projection of H* to H®™/T, then geo@ ls an automorphic
function with respect to ['; coaverscly, every automorphic function with
respect to 1 can be obtaincd in this way.

An automerphic form [ of weight m >0 is called a cusp form if f

ia holemorphic oo the whole H, and the followlng condition is satisfied:

{A3} Fureverycusp & of F. F_{q} is holomorphic at g = D.

We denote by 5., {T'} the set of all cusp forms of weight m with
respect to T, The dimension of 5m (T can be determined easily by means
of the Hiemann - Roch theorermn for B™/T. In particular, thers is a cananical
igomorphism {— ¢ of 55 (T) onto the vector space of ati the differeatial
forms of the flrat kind on H¥/T. defioed by w o =E{z)dz. Thereforc the
dimengion of 53 1Ty .:'.H.rer L is éxactly the genus of H¥/T.

3. Hecke operators. Let A be the subset of GLa (R), closed

uade r rmultiplication, and containing Y. Suppose that dec (&) >0 for

every 4 E A, and the following condition is satlefled:

{3.1) For every a €2, the double conat Tal' contains oaly a finite

number of right and left coscts with respect to L.

Let RBiT,4A) be the module conaiating of all the formal finite sums

Z}. ey Fou T with oy €4, 3 € C. We can introduce a law of multiplicatior



in R{T,&) aafollows. Let T,A €4, and let Tol = ui'.l."ﬂ-i and
TBT = '...Ij 'J_"Ej be disjolnt expressicnz, Then for every TET with £ € A,
the number of {i,3) such that T“i% = TE is uniquely determined by the
doubla cogets Yo', TBY, TET; it is independent of the choice of Tepresen-
tatives 5'0-1 b E'j },E. Call this number P Yal+TET;TET) and set
(3.2)  Tal-TOQ = Lo w(Pal TBT; TEOITET.
Extending this to the whole R(Y¥, &} by linearity, we get an associative
ring,

Evary element of R{T,A) operatus on EniT} inthe following way:
Let Ta¥ = L’?Hrﬂ.i be a digjoint expression. For evary f € 5_ (T},
define p=f1T (Tal) by

d
gie) = det (o™ 2! Z _

: ™"
L floglz)) jle,.2]
It can eanily be shown that g€ 5§, (T). Inview of {3.2), we zee that
ol ~» Tm (IaT) defines a representation of RIT, &) by lincar transfor-
mations in S (T'}.

Let ue now consider a special case where I is SL,(2Z), and & s

the set of all imegral matrices of siee 2 and with pogitive dete rminant, It -

ean be shown that R{I, A} s a commutative integral domain, The represer

a il
b d

a>0 and a divides d. Foerthie a, let Ti{a.d) deoote Ial {as an

tatives for THAIT are given by the matrices of the form &« = { }, whe g
clement of R (I,&)), Then we have

(3.23] Tla,d) FTia",d"') = Tlaa'.dd") if {d,d')= 1.

Therefore R{T, A) ia generated by the 7T {p" ,p“] with L2 X280 for all

the prime numbers p. Let T (p"} be the sum of all Tq’pl ' pH]- auch that



A+u=n, pEAZ0, Then we can prove that

!
Tip) Tp™ = Tie" )4 pTip.p) T1P" ") {n>0h
From thiz it follows that, u beiog an indeterininate,
-0 nyom . 24-1
13.4) a=) TiP"Iu? = [1- Tiplu +pTip.ptu™] .

Now we conslder a formal Dirichlet seriea D{s:L) with coefficieats in
R{T, &)
Dis;T) = Eﬂﬂ”(rur} dat fa}) " = zald'r{a.d} {ag) ™,
wiere the sum 18 extended over all the double coseta Tal with a € o,
By virtue of [3.3) and (3.4}, we gat an Fuler product:
Dis:;I) = T'lp [1-Ttp1p™® FTip piplT2ET,

Let us define the principsl congruence subgroup IN of level W by

{3.5) TN=[¢ESL212}|E-IMM{NH,
for every pogitive integer N. An autemorphic form | resp. function) with

regpect to TH ja ueually called a modular formn (reap. function] of lavel

M. Let Opy be the set of all matricee @ io & such that
1D -
cr.-[ﬂ d}mnd[ﬂ}. (d, M}=1,
and let .ﬂ.N"' be the aet of all 4 in & such that {det {a), NY =1, Then
we obtain an iscmorphiam of RiTN,ﬁN] unto R{T,BN"} by
13 6] TN::TN-; Tl {a €4 ).

. M - -4
Therefore, if we sct D7 {3} = IZTN\' ﬁ!rH{TNﬂTH] det (&) 7, then

- -1
DN:s} = HP*HL’ 1 - TN[plp" + TH{p.plpl uadh M

where TN{FI arwd TH{p,p] are the elements of R{Tﬂ,ﬂﬂl COTTEAROL-
ding to T{p}! apd Tlp,p! by the iscmorphism [3.6), respectivaly.

Taking the repreasntation in Sm {I‘N} H I‘NuI‘H - T :T‘Nﬂ”‘ﬂ Y, wee



get & [hrichlat asrice with matrix coefficients

N -
{3.7) nmla}—zr

T, (Tl ) det {a) "
Ty mUnSy

l=-2% ]-l

M iy o]
Mo (1 - Thtpie™® + T tpiple
which coaverges ahsolutely for auitably large Re(s). Moreowver, DII:II{ B}
can he continued holemorphically on the whola complex a - plana and satislies

2 {unctional equation. I N=1, the fuactional egquaticon has the following

form:

* s " * - ey |
D.. (=) ﬂm im=-3) with B_ is)=T{s}i2t) Do ls).
With respect to a suitable hapgis {'El' P ,fh] of Sm{rl]-, the
Tm{l'] a¥; } can be rcprescoted by diagenal matrices simaltaneously. At
the cusp @ of Ty, each form 1; has a Fourier expanaion

o .
£42) = Lol a 43} omine

Then one can prove that the diagonal elements of Dr},l[ g3 aTe
- . .
- - -I.-r -
u=1ﬁn“]ng"'Hpil‘ﬂp“}FE"‘Pm ?..5]]
(LEj3h).
In particular, EH (L)) is ene - dimensional and generated by
_ o n, 24 _ } W - efiz
{3.8) alzy =gl 11-g" =/ 0, a.9% aq=e77%,
In 1916, Ramanyjan conjectured the existence of Euler product foz 12
o .g with the coeffigiente 2, of {3.8) and the ineguality 1?| =2p
E | 30, for every prime number p. The Fuler product waa fatablishec
by Mordell, In [3,.4 ], Hecks completed a gencral theory of consloucting

Dirichlet series with Euler product and functional equation out of modular

fortmse. The operators Tm (Tal'} are ealled Hecke wperatars. This work

was followed by Fetersoon who generalized Ramanujan's conjecturs 1o the

following form: "For every prime number p naot dividing W, the
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{m-1)f2

characteristic roote of T:i {p) bave absolute values = 2p A In

the above, I gave a survey of {a part of) Hecke's result, For the formulatin.
of R(Y, a) and ite generalization, I refer to [11.12,12]) and Tamagawa
[15,167].

4. Madular corvespondences and their congreence relationa.

Let T be a Fuchsian group of the first kind, and ¥ a projective acn-
singular curve analytically isomorphic to H"/I. Let & he as in the
beginning of B 3. Dencre by 4 the nataral projection of H® tao ¥. Let
céd, andlet X= [@izi ¥piafz}) =€ H* ). I can be shownthat X is
acutve on Y xV, andif Tal' = U?ﬂ Ta; is a disjoint union, one hae
(4.1) X- fele) x V) = wiz) x L0 ela (2},

In view of our definition (3.2} of the law of multiplicatioa in R (1,80, wa
aca that TaT —3 ¥ dafines a homormorpbiam of R({T, &} inta the ring of

algebraic correspondences of ¥V, We call X 2 medular correspandence

of V.

Mow let us take the group I"H defined by {3.5) asour T, Let Vo
be 2 projeclive non - singular model for H*/T, and K;I. Y;:I be the
modular correspondences of V. cbtained {rom the elements TH{F ¥

TN{p.p} af R-['.'t-'[,q,l"-"II , reppectively,

N}

v T
. *
Theorem : _..Fi. rrurdel \FN for H !I"H can be taken ao that ‘VH. :.'{P . ‘E’P

are defined over €, and, for all but a finitv tmber D_f Fr

[ 1 )
(X3 ), I'IF + FFP s (¥ ),
1 M - =1Iﬂ L
FEP (¥, )= (2} l'ip 12, bt

Hare | }P means reduction modulo p, np ie the lacus of x X xF on
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l_'"i.i"]-.,; o vN}p' i_.i., the Frobéntis corrempondenca, npl E the tranapﬁﬂzi:[

T

v and £ is a certain birations] automorphism of ¥V, independeot of p

P
We shall sketch the proof in the following section.

Let Jy; be the jacebian varicty of V., and let .ip.np.-': be the

s ¥ ;& . From our theorem

€lemeots of End (J,} corresponding to ’RP P

it follow s eaaily that

(.2) (€p), = 7y + 7' ot ),

[4.4) LAETC N B (AR AT O

On  Jp; acd {.]'N]IP. we ¢an find - adic coprdinate systems 80 that

MZ”'] = Me'“}‘]'p.] for every M\ of End {Jy) delined over 3. Then, u
being an indeterminate, from [4,3] and [4.4] we obtain

{4.5) det {1 M0k Ju+ Mf.:npjpuzl = get [1- M_E{fp}u]z.

Legt Md{?l} be a representation of M€ End (1) in Hl'ﬂ!JN}. It
is well known that Mp ia equivalent to the divect sum of M and its com-
plox conjugate, Since EF and np are defined ower (I, we may assume
that MY tE ) and Md[ﬂp] have rational coefficients, so that

det [ 1 - !'u'ld{EP]u + Md{ﬂp}puz‘_l = dot [1- Myglw Jul.
o ."-.,’p i resp, r]np} corresponds ta ):.P [ resp. YPL and }Ip[reap, ":'p}
i chtained from TH[p] {rcap. TN{p.p]]. Ad remarbed 3t the end of 82,
S?.{FN} iz canonically izomorphic Lo HI'D{VN}. Therefore MG{EP] and
Md'l‘npj are essentially the same ag T;I{p} and T?[p,p]. Wa get bence

det (1 - Mg(w yp ®1=det [1- T {p}p " + Ty {p.plp' ¢ L.

The right hand side ig exactly the determinant of the inverae of the p-factor

ol the Euler prodoct {3.7) for m = 2. Wc have thus proved that
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{1) ; W] -1 .y
L [E.Vﬂf'ﬂ'} iz egual to dEt[DB{s]] up tt a finite oumbe r of p-
factors. Therafora the Hazge - Weil conjecture iz assured for the curve \?N.

Combining [4.3) with Weil's result which aseerts that the character-

tetic roota of | 9 ﬂ'P} bave the aksciuote vaine PI._,I"E' we koow that the

characteristic rootn of Tiq{p} bave abosplute values not greater than E.p”z'

tor almwest all p.
5. Proof of tho congruence relation. Let 53{:-.!1. “"3]"33{""1* L"’E]"

Fle; w), wy] be the functicns of complex variables hils iy, x  with the
condition Im| -Jl,l"wa } = 0, defined by
gy (g ) = 60" w % gyt wy) = 10" w7,
r—-[:.:-,:...l.u?_:=x‘3+2'[{x-u}'3-w'al,
whers E' tacana the sum extended over all the elements w, other than 0,
of the rmnodula Zuwy 4 Zes . Dafine functions j{z) and EE'L{:.l o H by
2= w foy,

jiz} Ez{ul,wz]af'[ga{ul.uz}j-E?EE{MI,ME}EL

N =1
fpiz) = gziul, Vg ) gglen.org) " Pllac) + bry Y NG g, wp )
la,be Z;{a,b)#(D,0] med (N};
It ic wall known that Cij) ia the field of all rnodular functions of level 1.
By a simple caleulation, we observe that for every a g 1"[ .
M ]
[fab fa(=z}) = fpfzt forall {a, b}]ﬁ tagE TN"

Frorn this it follows that all the If and j generste the {ield of all madular

b
Mnctione of level N,
Rogghly spealding, the modular functions of level M ara obtzined from

the invariant of elliptic curves and points of finite order on the curves, To

be more precige, for z € H, determine ¥ by j{z}=71{Y - Z7] and call
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3. ¥ -%¥. Theo E(z} has the invariant

Efz) the elliptic curve '!,rz = dx
jiz). Let hz. be the function on Efz} guch that hzl:h:.}'}= x for
{x.¥y)EEfz}. Let us fix a point 2 such that j{zp) La transcendental

over (1, aod set Ju = jizgl. Eg = E(z2g 1. hﬂ=h=ﬂ.
Kpy = Glige hy(t} [t € E5, bt =0).

Then the {ield H‘N ia isomarphic o G{j.f;qh'.i. Moreover, K. i 2

Galois extension of {jq). and the Galeis group is isomaorphic to

CLy{Z/NZ) iX13. Let L., be the subfield of Ky torresponding to the

ST

M
+[& 0 - +

subgroup {2 (g |) [(a.M}=1)/{21}, Then Lyte } = Ky, and

Lig bas Q ae its constant field. Thercfore, if we take a curve Vo, whea

function - field over O is LW' then \FN is A tnode] for H'IT‘H apd

actually delined over (.

Mow let us coneider a digjoint expreagion
W p+l ) S ﬂ'l
T {pIETN'-‘ITHE Ui_=1rhlﬂi with & = l'-ﬂ P
for a prime nymber p oot dividing N. Set =z; = a;{z), }; =iiz;).
E;=Eilz ), by=h, for JE2iTp+l. Since det (4;) =3, one can fiad an
1

isageny }'i of E. te E; whose kernel ia of order p, Then the Her[li:

for 1%ix2p+l are exactly all the subgroups of order p  of Ep. In view

of (4.1}, the modular correspondence }III: ¢an be deacribed by the mapplnp
{ilzg) i tzgh) = Elite b by (25l 1 1Eigpa1),

or

(5.3) (Ggrbgte)d—={tj by then [ 185 p+1],

it = 0. In this way }:N may be connected with the isogenies

wheye te B, o

u.i

of elliptic curwves,
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in the next place, we axtend {p} toa prime divieor F of a suitably
large field containing iprd;.ete., anthat P{jg) le tranecendental over
2/p2. Let { }P mean reduction module P, Since (E,lp hae exactly
P opoints of order p, we have {Hertii}}P = {0} for exactly one i, say
i=1, Then {¥er ”‘1”? iz of oxder p for i> L, Hence [ll]F iz a
puiely inseparable isogeny of dagree p. It follows masily that |[EI }F =
(Eq "'I-E' and hence
(5.2} i"3p% B MO EE (P med P (€ Eg, N = 0.
Let M; be aniscgeny of E; ta E5 auchthat g 4 =p., Then we see that
for i™ 1, 4, i purely inseparable, 5o that (Eglp = IE].I};.

(5.3) jg=iFe bgii t)Fh{sF mod P (s€E . Ne-=o),

Bubstitating 'lit for & in [(5.3]), we get

I 1/ :
(5. 4] TH iz, hithtdshytpt) ‘P med P o{i>1:t€ Ky,
Bt = &)
By {3.2} and {5.4}, reduction module P of [5.1} im
; i 1S 1
(5.5} {Jﬂ,hﬂ{l‘.}lp—,}Ejnp‘.hﬂ{t}P]P‘FP times (jg p.hﬂ[pt} ;plp

{T.'EED,Ht=ﬂ1+
It can be ghown that the operation {igrbg{tl}— (jp.hylpt}] gives
by Therefore from [5.%) we cbiain
2 I N
kA = + o Y- .
(Kb, = T+ TT =ty Ty

The firet relation in cur thenrem wae found by Eichler [2 ] for a

3]
exactiy 'fp on W

certain fieid of modular functions with Fearpect to the group
= b -
{5.6) Tofny={ (2 d} € 5L,{Z) | c =0 mod {N)].
The resuit was generalized by [ 10 3, whose method 1 foilowed in the aboye,

The result for Tﬂ{HI or Ahy congruenge dubgroup of I‘l iz derivable
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egpentially from the result for I‘N. However, ag we chail see lzter, ii is
convenient ta state the result for eEome parcticular congruence subgroups such
as T, {MN). Fordetaillveferto {2,10]. Now Igusa [6]) showed that the
reduction process workes well for aill primes p naob dividing N. This fact
is ugeful in cur later discussion.

8. The unit group of 3 quaternion algebra. Let i’ ke an jndefinite

quaternich algebra over ., i.c., an algebra such that & 'ﬂnﬂ is apomor-
thic to the total matrix algebrs ME (R). Llet % be 3z maximal order in

4. i.e.. 2 maximal one amcong the subrings of §' which are finilely generat
madutes over Z, We gcoosider § as a subring of M, {E]}., and set

Tre) = {a€ o] detin)y = 1],

I

i) = (eeTie) lae) med N 1,

whiare N is any positive integer. Then the groups T{o} and rN{ﬂ'l-
regarded as subgroups of .'5'1.1_.-;.1 (R}, are Fuchgian groupa of the first kind,
I ‘}’ My ({2}, theee are nothing but Tl and I}y coneideredin B 3, I
% im a divigion aigebra, they have compact quotient spaces,

Suppose that N is prime to the discriminant o §+ Thern the ring
=f{MNs may be identified with the matrix ring M {ZfNZ). Let Ayils) be
the et of elemente 0o in = such that det (z) =0, a3 {; :] mod N,
Then we can show that R{TN{Q-}, Liyie)} bas the game structure as
R(I . fy) of 3 3. Taking the reprosentation of R{T (o), O (s} in
Emlrﬂia}]. we ¢an conatruct 3 Dirichlet aerien D'II;T&.{E: §} with a funec-

tional equation and an Egler product analagous ta [3,7). Furthermore,

HITH{L#] has a madel ‘fﬂ[crl- defined over [}, provided that M is prim
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ta the digeriminant of f: ard :[T] (5; ¥oyio) fO diffare fram
det [D;I[ B §'_I]'1 only by a finite number ol p - factors.

This resull can be proved as follows, First we define, {or every
z € H, 2 complex torua A, of dimension 2 by
(6.1) A, =L, L o=fa(Z}lacel,
-3 z - 1

where an clement of & is cansiderad as an elerneat of Mo (R). Dne can
prove that "ﬁ‘t. has a structure of abelian varigty. Furthermore, every
element of o defines an epdomorphizm of AB in 3 aatural manner.
Endowed with a suitable polarization, the A form an analytic family
{ A.E ! % €Y1l of abelian varieties with the structure of endomorphisams and
polarization, parametrized by the pointe of H. The moduli of an abelian
variety A, with such a structure are given by the values of automorphic
functiona with respect to T{o] at =z, The antomerphic functions with
respect o the congruence subgroup TN[.:!} can be cbtained from the coor-
dinates of the pointe of order N on A,, Here again we can connect Hecke
operators {ar modular correspondences on HITN:EH with the isogenies
of A, . Using the same ideg as in F 5§, we obiain congruence relations for
modyglar correspondences on HITN fe), though the present case iagvolves
mere techoical difficultiex than the caac of clliptic medular functlons, A
full detail of the theory is givenin [ 12].

7. Alaw of reciprocily in non - svlvable extensinons,  Let us consider

the group T, {N] of {5.6} for a particular case, N=1l. It iz known

(5] thae 5o {Tﬂl 11)) iz one - dimensicnal and gencrated by

1In,4
g

Cazyatuz} )% g 0 (19" 01 - ¥ (g=etTiEy,



lé
V' rite thi y oo n 2@ -8 '
-rite this as / ., c.q', and eet Dis}=/ _;eqn ". Ey Hecke's theary

wi hawve

I-2a }_] .

(7.0 pay = Ey T et e
¥l =D0%(2-3) with D*:a]|=!‘:s}{zfrr“11“'3 Dis].

The field of automorphic functions with respect to Ty (il) tis generated by

jlz} and j{liz); and Qij{z],jillz}} has a maodel

{7.2] Ery®=ax? - (4-31/3)x - (2501/27).

Therefore, by virtue of the congruence relation, we kaow that il LR L

the p -th power andomorphism of (E ]P* then

&
7. - = -
(7.3} dat { X MﬂiﬁP]] X -e X tp
with the :P determined by

oo o F
(7.4] En;lcnq"=q-l'fnz]u-q“}z-:laq”“: :

By the result of Jgusa mentioned at the end of § &, the relation {7.3) is
true for all p#ll,

Lt ¢ ke 3 primc oumber, and K., the fleld generated over O by
all the courdinates of the points of arder £ on the alliptic curve E (7.2}
Then K 15 a Czlois extenzion of &, and every element of the Galois
group G{K,fC}} gives an autemorpbiem of the group of points of order 4
on E. Henee we obtain an isomorphism g ol G{K/Q)] into
GL,(Z/fZ}, Let p be a prime number, other than 11 and £, Let P
be o prime ideal in H-":’ dividing p, and Fn 8 Fuotenius autsmeorphiam
of K!,_u cver § for P, FEy takiong svitable € - adlc coordinate systems on
E ami {Ejp » wa find Sy{0g) S M,f':“p:' ma>? { ), 5o that

(7.5} dat{}E-Sﬂ{u‘P]]i}iz-cpKi—p mad {¢]).
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It follows, in particular, that 5, (G (KgfQ}) containg an element whoss

characterietic polynomial is XE.c ¥ tp. Ueing thie fact, ] found that

F
SAGIK AN = GL,{Z/¢2Z) atleast for T Fs 97,

This fact is interesting, for there was previcosly no known example
of non - gojvable extension for which the law of reciprocity is Eiven axplicitly
(in any scoge ); here are such examples. In fact, we have obtained a Galeis
extengion K, of O whosc Galeis group is isomorphic to CGLytZ/2),
and of which the law of reciprocity is glvén by {7.5}, whare the ¢, are
coefficients of the Dirichlet series {7.1) with Euler product and functional
equation; they are easily obtained from (7.4 aa many af we nesd! More-
o¥er, we can determine Artin's L - functione of the extension K./Q for
a fairly large number of chararters which are not simple, & more detailed
account of the resuit will be published elsewhara,

Y& may expect a result of the same kind for other congruence sub-
Eroups and alse for the Fuchejan group discussed in # & (cof. [ 12, pp. 328 -
329 ]). Put here my emphaais is laid on the explicitness or comprehensi-
bility, and not on generality. It will be an important task ta reorpacize
and generalize the result from & new view - point.

8. Change of model and extengion of basic Beid. In the czee of an

abelian variety A with sufficiently many complocy rmoliislications, we can
determine E: L {a: Afk)Y for wlmoet any fiald o .v 750 'ivg K of A,

Contrary to this, in the case of the curve H*"'T.x. e 'E"E‘.-I{.E 1Y, we hppe

determinad E{l]{u;vﬂfﬂ} only for a partice".n .~ Vo over Q. It

is net an easy problem to prove the Hawee - Wil Seeriare Saroan arbitrary
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model V' bivationally equivalant to ‘L-"N. with an arbitrary algebraic
number field k as the basic field. However, if k is abslian over 0,

a part of this problem tay be solved in the following way. For every abelia:
character X of Q. we define a Dirichlet series

Drr::.{ﬂ; L %} = E:;l ;I,"{I;'I}E'nn‘a

g -
hﬂm{l;éi =Zn=lE'n“l' Then Df,'{a:.x;+} can ba continuad helomeor-

phically on the whole - plane and eatisfies a functional eguation [ 13, Th, 1
It if easy to pee that E{ b (8: Vi) fk]} is a product of
det [ D?[s: .4 1! for several 1's, up to a finite number of p- factors,
A discuseion irem a somewhat different view - point can be found in Ranga-
chari {97], Koano [7 1.

As an explicit example, the €y being as in (7.1} and (7.4]), set

oo

Enﬂ Xindle,a™®,
Trejten) ® (11421201 x)

Dfa;X)

D*is;: X}
[or a primitive charactar X with the conductor {d). Then one cam prove
D¥is;Aa) = ({1 wWX¥ED*(2-8: X1,
where W([X})= |d!-”az:=l Ita]aaﬁa“dl. and X ie the complex
conjugate of X . In particular, if in}= l_%} { Excnecker’s aymbuol ],
one has WiX)Z = $4-1), so that
D¥{a; X} = A(-11}D%{Z-2 ;X }.
Mow let E be defined by (7.2), and E' an elliptic eurve isomorphi
te E avar C but nat isomorphic over Q. Since 11 are only automor-
phiame of E, every ieomorphism A of E to E' ip defincd owver a

quadratic extension Q({Jfd} for some d& Q. Here we take as d the
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diacriminant of ﬂ{ﬁ}i Then it can be ezsily verified that i':[ ]{u; £
is, up to a Holte saumber of p- factors, equal to Dia; ' .'p'l wilth

iim) = {%}. Therefore, the Hasse - Weil copjecture for E' over Q is

Apsured.

9. The zeta - lunction n_fi fibre variety. 5o {ar only automorphic

forme of weighi ¢ have been related to the zeta - function of a2 curve. Now

{h}
N

wg can conatruct a certain fibre variety W whoge zeta - lunction is
expresoad by the Dirichlat series D:{ B; i',l vonsidered jn § & for m £ 2.

To construct such a fihre variety, take 4 and o asin § 6; asseme
that 4 is 3 division algebra. Let E—L;{ R] dencie the group of elements
in Lo (R} with positive determinant. For a positive integer b, let Fp
be the product of h copies of M, {R). viewed 25 a right and left My (R} -
module in a8 naturzl] manner. The product GL;{ R) % Fi, forms a group
with regpect to the law of multiplication:

(Eoudim v} = (Emvh'+a)  (§,mECL (Rliu,vE Fu}

where prime meanz a canonical invaluotion of Ma{R}. We lat
GLE+IH }x Fp acton H x Fp by the ruls:

(&,ujfz,v) = {of{=z),va'+u} (2 € GL,"(R};u,v€ Fy; =€ H}.

Brefine a rnapping x, of HX Fy onte Hx I::z"1

by
z =
xpizyuy, e ooupd =tz a{fh .. ug (7))
{z € Hi o, € My (R}}.
We introduce 2 complex structure in H x Fp so that xp is a complex

analytic isomorphism. Then evary clement of GL;.{ R)* Fp acts on

H® Fh ad 3 complén analytic automorphism.
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Let o™ denote the product of h coples of &, Am 2 subgroup of
‘-'.'}LE"r (R)x Fy TN[e! A ol glves a properly dizcontiouous group of trans-
formations on H x Fyp with a compact quotient. Set

w Pl (Pt N eH xRy,
Assume herealter that T'N{u'} has po elerment of finite order other than
the identity element, Then WH{H is a compact complex manifold.
Furthe rmore, oot can easily verify that WH‘ k) in a fibra variety of which
tha hasc is L TN{SHH' and each fibre iz the product of & copies of
the abelian variety A, (6.1),

Kuga [ 8] determined completely the cohomology groups of & cartain
clage of fibre varieties, which includes wmih} ag a special caze.  In the
case of wwih ', it turns out that every cohomoelegy group ie canonically
iscraorphic to a direct aum of 5m{TN!e.r:|] for wome m's. He proved

(h)

alao that ‘WH can be ambedded in a projective space.

Lot 8 wis) be anatural projection of H X Fy, to WN‘h].
Asgume that M je prime o the discriminant of f. Lot -ﬂ.N{a} bc as
in B 6. For simplicity, set T = T (o), A = &y{®). Fer every
T E 4, det

XiTal) = [wia) s wife,0)s) [ seHcF ],

We verlfy easily that X is a subvariety of ww‘ h) X WN'[M » It ¢an he
shown that Tal' 4 X (TaT) defines an isomorpbism of R{T, &} into the
ring of correspondences on 'thh :". the latter being defined suitably.

Oee can find tww elememe o and B of A, [or cach prime number

P P

g, zuch that det{ﬂ.P}=p and p-lBPETf#L Set
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(h) o xire. ™), v s xqre T
}:P { ay I.TP { EP k-
Mow we can fiod a projective modal WN{h!' a0 that WN'h]. Irjh]. thh]
are all defined ocver O, and
fh), _ »
txp = T+ TT
Y{h:‘. = a *
p(Y 0y =TI ﬂp.
for all but a finite oumber of p. Hera {
HP

correspondence sach that | ﬂp‘]“ has Lhe sama number of fixed points as

(b} (h}
ca (W X W, }P
]p meana reduction module p,
h
ig the locus of x x xF on {Wr,; ! x W[,;hllnp. rlp* is a certain

ﬂ]: for m=1,%,.... Combloing this congruence relation with the

regult of Kuga coneerning the ¢cohomolagy groups of WN[h}, trentioned

above, we fing
Eess Wy e § ﬁ::u [Ces- tb/2}) T (a- (br2ys2y1® iR o0

b#]
x T f,i‘n [l ?=n det [ﬂﬂz {a- (6-3)/2; 310 BN

where # means the equality up to a finite number of p-factors, and the
efh,b, i} are non- negative integers, depending oply on h, b,1. A full
exposition of our result will appear as a collabokation with Kuga,

A farmula of this kind was first piven empirically by Sato for a
<ertain fihre variety whoss basg is HY/ T,y and fibres are the product
of elliptic eurves modula 1. A variety of thia kind had been suggested by
Fuga, as the onc whikh would describe Ramanufan's funrtion in terms of

Hassels zeta functinn.
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ZETA AND L FUONCTIONS

by Jean-FPlerre SERRE

The purpose of this lecture is to give the general proparties of zeta

fungtians and Artin's L. functions in the zetting of schemes. [ will madnly

restrict myself to the formal side of the theery: the connection with £ adic

cohomelogy and Lefschetz's formula would be better discussed in & sarminar.

g 1. Zera functions,
1 _am

L.1. Dimension of schetmean,

All schernes considered below are guppoeed to be of finite type over

S5ach 5 acherme X has 2 well defined dimengion, dencted by dim. X.
iz the maximum length n  of a ¢hain
20 5 2y T .0 T Zhe I3 24y
of closed irreducible aubspacea of X, K X itseH is irreducible, with
generic point x, and if k({x) is the corresponding residue field, one has:
(1] dim, X = Kronecker dim. of k{x}.
{ The ¥yonecker dimension of 3 field E ig the transcendence degree of E

over the prime fHield, augmoented by 1 if char.E =0.}

l.2. Closed pointa.

Let X be 3 scheme and let x € X. The following propertias are

equivalent:
ta {x} is cioceed in X,

(b)Y The residoe field kix) is finite.

Z .

It
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The eet of cloged points of X will be denoted by W we view it as a discrete
topological space, equipped with the sheal of fields k{x}; we call X the
atomization of X, K x € X, the porm MNix} of x is the numbaer of
elemnents of ki{x}.

1.3, Zeta functions.

The zeta ftunction of a2 scheme X is delined by the evlerian product

() Cix,s) = T~ b
26X 1. —
Mix)?

It is easily seen that there are ouly a finite number of x € X with a given

nerm. Thie is enough to show that the above product is a formal Dirichiet
(v vl

Eeries E AL fn®, with integral coefficianta, ]In fact, that series converpes,
n=l
as the following thecrem showa;

THEQREM 1. The product L(X,.s) converges absalutely for R is) > dim. X.

{ A5 usual, EK{s) denotes tha real part of 5.}

LEMMA. [a} Let X be alinite ynion of schemes }Ei. H theorem 1 ig walid

for sach af the :{i'i-.. it is valid fopr X.

(b)Y ¥ X — ¥ is a finite raorphicm, and if thearem | is valid for V¥,

it 13 valid for X,

Using this lemma | which is gquite elementary ), znd induction on dimen-
sitn, one reduces theorer 1 to the case X = Spee Al Tyvseen T,.IL where

the ring A is either 2 or —_E:-p' In the {irst caso, dim,X = n+1, and the

product {2) pives |aftar coilecting asme tarma together):

1
x, =
Coxe) =TT —0

It the sacond case, dim,X = n, and £{X,s8} = PAil-p"" %), In both cases,

= = Cla=-n) .



wa have abeolute convergence for R s) > dim. ¥,

1.4. Analytic contingztion of zeta functione.

One conjectures that {{X,s) can be continued as a meromorphie
functicn in the entire & - plane; this, at least, has been proved for many
#chemes, However, inthe general case, one knows only the following thuch
waaker:

THEOBREM 2. L(X,ws) can be continued analytically [ag 3 meromorphic

fuaction| in the Rhalf- plane Ris} > dim. X - -é '

The singuiarities of { (X, e) in the strip
dien. X - % < R{s} § dim, X
are as follows:

THECOREM 3. Assume X o be irreducible, and let E ba the razidve field

ef it generic point.

(i) ¥ char,E =0, the only pole of L{X.s) in R{s]:‘dim.}fr%

i s =dim. X, and It is a simple pole,

{ii} I char.E=p# 0, let g be the highast powesr of p such that E

cantaine the field —Eq* Tht only poleg of L (X, s8] in R{E}}dim.:{-%

are the points

2rin nEZ,

s = dim. X + .
Yag q =

and they are gimple poles.

COROLLARY !. Far any non ermnpty acheme X, the point & = dim.X is 5

pole of E{X,5). Ite order i=s equsl b2 the number of irreducible components

o K of ditmension equal to dim. X,

COROLLARY 2. The domain of converpeace of the Divicklct saries {(X,s}




is the hald plane R{a} > dim.X.

Theorem 2 aod Theorem 3 are deeper than Thesrem 1. Their proct
uges the "Riemann hypothesie for curves of Well (7], combined with the
technigue of "fibering by corves” (1.8, maps X —» ¥ whaoge fibers are of
dimension L], One may alao deduce them from the agtimates of Lang - Weil
151 and Miznewvid (6],

1.5. 3Swme propertics and cxamples.

Z{X,8) depends only on the atomization X of X, In particular, it
does not change by radicjal sworphism, and one hias

(2] Elxredpﬂl=ti}[;ﬂ] :

If X ia a disjoint union [which may be infinite] of subschemes X,
cne has:

CiX,ey= T] LiX,8)

with absolute coavergence for R{s] > dim,X. It is even snough that % be the
disjoint union of the Ei ‘s, Forinstance, i f: X — ¥ is 3 morpbism, ons

_lhf'l-. y E?. and one geta:

nmay take for H;'s the fihern x? = f

(4] Lix,s)= T] Elxy.al'

vEY

[This == with ¥ = Spec{Z} ~-- was the vriginal delinition of Hapee - Well.)
Mote that the }{F g are achemes over the finite fielde k(y), i.e. they are
"algebraic varieties' .

I X =Spec|A), where A Qs the ring of integers of a pumber field
K.L(X,s8) coincides with the classical zeta function :I{ attached tu K.

For A= Z, one gete Biemnann's zela.
=K

I An[}{] iz the affine o~ apace ovcr a scheme X, one haa:



n
T
-
o
L]
L]
o
—
L

ELaA (X} 8}

Simailarzly:

.

l.'{:P"'[I].ﬂ] E{X,s-m}

l.&. Schemen over a finite field.

et X he a scherns aver E‘Eq. ¥ % X, the regidue field kix) iz a
finite extension of gq; let deg lx] be its degree. Ooe has
Mixt = qdug{xj,
and
(5} LiX,s) = Z{¥. g7},

where Z{X,t] iz the powar series delined by the product:

|
(6) zix,t) = Ll T Egtn

The product (6 ) converges for |tl « g~ gim- X

THEOREM 4 (Dwork), Z{X,t) is a rational function of .

See [3lfor the proof.

In particular, §(X,s) is mercmorphic in the whole plane, and
periodic of pericd 2miflog{q).

There is ancther expression of Z(X,t} which §2 guite vaeful:

lLet k= _,—1':-:1' and denote by k_ the extension ol k with dagree o,
Let X, = X{k_} bethe sct of peiots of X with value in k /k. BSuch 2
point F  can be yiewed as & pair (x,f), with x & _f, and where [ is a
k-isomorphism of ki{x} into Ky Ome haa:

Uk, = x (%),

where k is the algebraic closure of k.



it ie easily seen that the X 's are finite. I we put:
v Card X},
one checks immediately that: o
1} log. 21X, t] = E P'ntn'!n.
n=1
1,7, Frobenius,

We keop the notations of L&, Let F: X —* X be the Frobonius
morphiam of X into iteelf (i.s. F ig the identity on the topological epace
¥ . and it acte on the sheafi O, by @ r* ¢}, X we make F operate on
X1{K), the fixed points of the n.th iteyate F" of F are the elements of .,

. n
In particular, the number p_ is the numbeyr AF™) of fixed points of F .

This remark, [irat made by Weil, i the starting point of hie interpretation of

v, @aE atrace, in Lefachetz's siyle.

& 2, L f[unetions.

~ 2.l. Finite groups acting on a acheme.

Let X be ascheme, let G be a finite group, and supposae that G
acts on ¥ on the right; we also aseume that the quotient X/G =Y existe
li.e. X is a union of alfine apen sete which are stable by GY. The atomiaz-
tion ¥ of Y may be identified with ®iG. More precisely, lal x £ X, let
¥ be its irnage in ¥, and let D{x) be the corresponding decompesition sub
group; one has g € D{x) il and only if g leaves X fixed. There i» 3
natural epimorphigm

Dix) = Cal(kix}/k{y]].

Its kerncl [{x) 5 called the inertia subgroup corresponding to x; when



I{x) = []], the mozphiam X —* ¥ is atale at x.

Sinee D(x]/Ii{x) can be identified with Gal (k (x}Ffkivy}], it s a eypclic

grocup, with a canenical generator F_. called the Frobeniug alement of x,

2.2, Artia's definition of L fuanctions.

Let X be a character of fi.e. a linear combination, with coaflicients
in 2, of jrreducible complex characters). For each y € ¥, and for sach
integer o, let xijl'u] be the mean valua of X on the n-th power F: of the
Frobenjus elamant F_ & Dix) fI{x}, where x& X §3 any lifting of v.
Artin's definition of the L function L(X,X; s} is the following (cf. [1]):

a
{4) log. L{X,X ; 8} = ?z_ i XLy Ny " e

ye¥ o=l
When X 1a the charzcter of a linkar rapresentation g+ Mg}, one has:

1
(9] LiX.X;a) = l; —
¥EY det(1-M{[F, }/N{y)®]
where M{F_ ) is again defined as the mean value of M{g}, for g F_ .

Both expressions (8] and (%) cooverge absolutely when Ri{a} > dim.X.

2.2, Formal properties of the L fanctioos.

{i] L(¥.,X} dependson X snly through itz atomization X,
(i1} LN, A+M') = LI, X ). LIX, X').
{iid} Y X ip the dizjeint unjon of the _fi's. with X; stable by G
for 2ach i, owme has
LiX,%:s) = T] LiX;.A;s),
with absolute convergence for Ris} > dim. X.
o

{iv] Let @:G— G' be a homomorphism, and lat f,X = X X G' be

the scheme deduced from X by “extension of the structural group”, Let X!
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be a character af &', and lot o X' = X'- ¥ ke the corregponding character
of O, OCne has:

(10} LIX, 7 X) = Lir, %, '),

v} Let 7:0C'— & be a homomorphism, amd let %X denote the
scherne X on which G' operates through #. Let %' be a character of G',
and let L L' be its direct image, which ie 2 character of ¢ {when ' i3 a
subgroup of G, T 7' i the finduced character®of %'}, One has:

(1L} LiX,m') = Lig" X, XY).

{vi) Let X =SpeclE ). Y =SpeciBohy G = GaliF nlE,), and X

an irreducible character of G, Owre has-

1
1-A(F)gq?®

where F is the Frobenius element of .

{1Z ) LiX, A :a3) =

It is not hard to see that propertics {i) o {vi} characierize uvniguely the

L functions,
{vii) IE X =1 {unit character}, LiX.1)=E{X/G},
fviii) ¥ X =r {character of the regular representation}, one has:
L{X.r)=§IX)}.
ombining (viiil] and (ii), one gets the following formula {whick i one of the
il reasvne Ior introducing L functions }:

(13} £iX) = Lix,xdesliX)
X EIre(c)

where Irr{G) denctes the set of irreducibla characters of O, and

deg (Y= X {1},
There i6 an analogous result for L[(X/H), when H is a subgroup of G;
anez just replacea the regular répresentation by the pertnutation represeatation

of GfH.



Z.4, Schermen over a Finite field.

Let X be an gq - scheme, and assurmne that the aperationa of & are
iq' actoemorphisme of X. The scheme Y = X/G iz then also an iq' achema,

On the get X[k}, we have two kinds of operators: the Frubanius endo-
merphism F [cf. n®l.7) and the avtomorphisrns defined by the elements of
G, f g6, nnehase Fag=geF.

If we put aa usual (= q” %, we can trangform LIX, X: &) into a

Fanction L (X, it} of t. An elementary calculation gives:

{14} log. LIX,%; ) = ci I-‘ntl}t“!n-
n=1
with=
{15} v (XY = 1 Z :{{g'l:ln{gF“}.
n (G} _Zo
5

where (G) = Gard (G}, and A(gF™) is tha number of fixed points of gF"
{acting on X {kJ).

| These formulae could have baan uged ta define the L functions; they
maké the verification of properties (i) to [vi) very eaay.)

Remark, I ix oot yet knows that L{X,X:t) is A rational function of &,

However, this is true in the [ollowing special casaa:
{a} When X is projective and amooth over Eq+ this followe from
£ ~adig sahomalagy (Artin - Grothendieck ) .
{b) When Artin - Schreier or Kummer theory applies, j.a, when o iz

N. or of order m prime te p, with v dividing q- L,

cyclic of order p
This ¢an be proved by Dworkls method; the casa © = 2 fpZ has bern studied
mr —

in some detail by Bombieri.
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£.5. Artin - Schreler extensions.

It would ba #asy -« bt too long - - to give varfous examples of L func-
tions, in particular for ao abelinn group G, I will limit myself to one auch
eiarmple:

Let ¥ ke an gq—schnma. and let a be a section of the aheaf E?.
In the affine line Y[TJ], let X be the closed subacheme defined by the
equation

P - T = 5.
Hweput G=2fp2, theprouvp G actson X by Te» T+1l, and XfGC = ¥;

we gel in thie way an &tale coveriog, Let w be a p+th root of unity in C,

and let ) be the character of @ defined by X ({n) =w". The L {unction
LAX., Xt} is given by formula {14); its coefficients by (X} can be written

here in the following form:

Tr afyr)
{Iﬁ} I"In'l?:i = Et L. @ [
vEY,
whe re '!l"n= Yik,t, 2nd Tr_ is the trace map from “’n=Eqn to EP'

Tho above eéxpression g a typical Mexponential eum'. I, for inatance, we
take for Y the multipllcative group G, and put a = hy + gy . o w2 pet the

so-called Kloosterman gums. This connection between Lo functions and

exponéntial surns was first noticed by Davenport - Hasse [2], and then used
by Weil {81 to give eatimates in the 1-dimensional case,

Z.6. Analytic continbation of L functions.

Theoremes 2 and 3 have analogues for L functicns. Firet:

THEGREM 6. L(X,X;e) canbe sontinued analyiically {as a meromorphic

1
E‘F

fuhction) in the hali- plane Kfs) > dim. X -




i1
The singularities of L{X¥,X%; a) ir the critical strip
dim. X - -;“: Rig) & dim. X
can be determined, or rather reduced to tha claseicnal cage dim.X = 1. One
pnaps the following variant of the "{ibering by curves” method:

LEMMA, Lat f[: X -+ X' be a mozphism which commuies with the action o

the group G, JAssume that all peometric fibers of { are irreducible curves.

Then:

{17} LiX,%X:a) = Hiab, LiX", A s-1}) ,

1
where Mie) is holomorphic and # 0 for Ris}>dim.X - ¥.

This lemma gives & reduction process to dimenaion 1 fand even to
dirmeneion 0 4 X is a scheme over a finite field}. The result obtained in
thie way i3 a bit involved, and I will just state a epecial case!

THEDREM 6. Assume that X ig irreducible, and that © operates {aithiully

on the residuge tield E of the generic point of XK. Let X be a character of

G, and let (X, 1} bethe multiplicity of the identity charactez 1 .:_'E x.

The ordor of L{X,X )} at s =dim.X is equatta -<{X,12.

COROLLARY . u % i% 2 non trivial irrcducible character, L .10 is

holomorphic and # 0 at the poinl 8 = dim. X.

2.7. Artin- Cebotarev's dengity theorem.

Let ¥ be an irreducible echeme of dimenpion o £ 1. Using the fact

that £1Y.s8} has a simple pole at & = n, one gets casily:

| |
18 — -~ 1 for 8 =% n.
{ 1B} -!,Zé‘!f N{yI® o8 T. o n

Asubeet M of ¥ bas a Dirichlet density m™ if ooe has:

i 1
{15} {émwﬂlngm ~3 m for 5—n.




L2

{For ¥ = Spec [i"“ thie is the uswal definition of the Dirichlat density
of a get of prime numbers. )

Mow let X wverily the assumptions of Theorem 6, and let ¥V = Xf0G.
Asjume that dirm.X 2 1, and that G operates freely (i.e. I(x)= [1] for
all x &€ Xy, I ¥ E ¥, the Frobenina element Fy ¢facarresponding point
x € X is a well defined element of G, and ite conjugation clags [ F ] = Fy
depends only on v.

THEOREM 7. Let R< G be asubeet of U stable by conjugation. The set

?R of elaments y € T such that F‘F © R bas Dirichlet denaity

Card{R }fCard{G}.
This followe by standard argements from the corollary to Theorem 6.

COROLLARY . ?R ig infinite if R £ Q.

Remark. A slightly more precise result has been obtzined by Lang (4] for
'geometric' cowerings, and alse for coverings obtained by extension of the

ground Feld,
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