REAL ANALYSIS PRELIM EXAMINATION SPRING 1998

Complete as many as possible of the questions below. A smaller set of complete solutions may carry more weight than a larger set of partial solutions.

Unless otherwise stated, "measurable" will mean measurable with respect to ordinary Lebesgue measure on R^n .

- 1. Let f be a real-valued continuous function on a closed interval [a,b]. Prove that f is uniformly continuous on [a,b].
- 2. Let $f_n(x) = \frac{nx^2}{1+nx^2}$. Determine whether the sequence $\{f_n\}$ converges uniformly on each of the intervals [0,1] and $[1,\infty)$. Justify your results.
- 3. Let f(x) be a real-valued C^2 function on a closed interval [a,b]. Given $\varepsilon > 0$, prove there exists a polynomial p(x) which satisfies *both* of the following conditions:

$$\sup_{x \in [a,b]} |f'(x) - p'(x)| < \varepsilon$$

$$\sup_{x \in [a,b]} |f(x) - p(x)| < \varepsilon$$

4. Prove the Riesz-Fisher Theorem: Let $\{\phi_k\}$ be any orthonormal system in $L^2(E)$ where E is a fixed measurable subset of \mathbb{R}^n . Let $\{c_k\}$ be any sequence in I^2 . Prove there exists an f in $L^2(E)$ such that $S[f] = \sum c_k \phi_k$ -i.e. such that $\{c_k\}$ is the sequence of Fourier coefficients of f with respect to $\{\phi_k\}$. In addition prove that Parseval's formula holds:

$$\sum_{k} |c_k|^2 = \int_{E} |f(x)|^2 dx$$

5. The convolution of two functions f and g which are measurable in \mathbb{R}^n is defined by

$$(f * g)(x) = \int_{R^n} f(t)g(x-t)dt$$

Prove that if $1 , <math>f \in L^p(\mathbb{R}^n)$, $g \in L^1(\mathbb{R}^n)$ then $f * g \in L^p(\mathbb{R}^n)$.

- 6. Let $\{f_n\}$ be a sequence of functions in $L^1(R^n)$ such that $\|f f_n\|_{L^1} \to 0$. Let $\hat{f}(\omega)$ denote the Fourier transform of f. Suppose $|\hat{f}_n(\omega)| < \left(\frac{1}{1+|\omega|}\right)^{-\left(\frac{1}{2}+\epsilon\right)}$ for some $\epsilon > 0$. Prove
 - a. $\hat{f}_n(\omega) \rightarrow \hat{f}(\omega)$ pointwise as $n \rightarrow \infty$
 - **b.** $||f_n f||_{L^2(\mathbb{R}^n)} \to 0 \text{ as } n \to \infty$
- 7. Give an example of a function f(x,y) defined on $I = [0,1] \times [0,1]$ for which each of the

1

iterated integrals $\int_0^1 \left(\int_0^1 f(x,y) dx \right) dy$ and $\int_0^1 \left(\int_0^1 f(x,y) dy \right) dx$ is finite, but $\iint_T |f(x,y)| dx dy$ is infinite.

- 8. Suppose $f_k \to f$ in $L^p(R)$, $1 \le p < \infty$, $g_k \to g$ pointwise, and $\|g_k\|_{\infty} \le M$ for all k. Prove that $f_k g_k \to f g$ in $L^p(R)$.
- 9. Consider the sequence $f_n(x) = \cos(nx)$ on $[0, 2\pi]$.
 - a. Prove that $f_n \to 0$ weakly in $L^2([0,2\pi])$
 - **b.** Prove that f_n does not converge to 0 strongly in $L^2([0, 2\pi])$.
 - c. Prove that f_n does not converge to 0 in measure.
- 10. A real valued function f on R is Lipschitz if $|f(x) f(y)| \le C|x y|$ for any $x, y \in R$ where C is a fixed constant.
 - a. Prove that a subset E of R is measurable if and only if $E = H \cup Z$ where H is an F_{σ} set and Z is of measure 0. (An F_{σ} set is a countable union of closed sets.)
 - **b.** Prove that the image of a measurable set under a Lipschitz function *f* is measurable.