
THE UNCERTAINTY PRINCIPLE

1. Definitions

Definition 1.1. The Fourier coe�cients of a periodic function with period 1 are defined by

f̂(n) =

Z 1

0
f(x)e�2⇡inx

dx

for n 2 Z. Since
R 1
0 e

�2⇡inx
dx = 0 for all n 2 Z\{0}, we have for f(x) = e

2⇡ikx

f̂(n) =

Z 1

0
e

�2⇡i(n�k)x
dx =

⇢
0 if n 6= k

1 if n = k

Then f̂(n) measures how much the function f vibrates at frequency n. Moreover, using the synthesis

formula f(x) =
P

n2Z f̂(n)e
2⇡inx

, one can see the function f as composed of functions vibrating at

di↵erent frequencies each with amplitude f̂(n).

Definition 1.2. For ⇠ 2 R, Fourier transform of an integrable function on R is defined by

f̂(⇠) = Ff(⇠) =

Z
f(x)e�2⇡i⇠x

dx

The Fourier transform satisfies the following properties:

• The Fourier transform relates the translation and modulation operators T
a

f(x) = f(x � a),

M
a

f(x) = e

2⇡iax
f(x) as follows: dT

a

f = M�a

b
f and [M

a

f = T
a

b
f

• The Fourier transform relates derivatives with products: bf 0(⇠) = 2⇡i⇠ bf(⇠)
• Inversion formula: f(x) =

R b
f(⇠)e2⇡ix⇠d⇠

• Plancharel’s identity: hf̂ , ĝi = hf, gi or R f̂(x)ĝ(x)dx =
R
f(x)g(x)dx

• Parseval’s identity (generalisation of the Pythagorean Theorem): if we denote

kfk2 =
� R |f(x)|2dx�1/2 = hf, fi1/2, then kf̂k2 = kfk2.

Finally, the Cauchy-Schwarz’s inequality is a tool frequently used in Analysis stating that
���
Z

f(x)g(x)dx
��� 

⇣Z
|f(x)|2dx

⌘ 1
2
⇣Z

|g(x)|2dx
⌘ 1

2
.

It can also be written as |hf, gi|  kfk2kgk2.
2. The Uncertainty Principle in Harmonic Analysis

In Harmonic Analysis, the uncertainty principle can be succinctly stated as follows: a nonzero
function and its Fourier transform cannot both be sharply localised. That is, if a function is restricted
to a narrow region of the physical space, then its Fourier transform must spread (be essentially
constant) over a broad region of the frequency space. It then expresses a limitation on the extent to
which a signal can be both time-limited and band-limited.

The most simple way to write mathematically this property is by means of dilations: if we define
the dilation operator D

�

f(x) = �

�1
f(��1

x), then dD
�

f(⇠) = b
f(�⇠).
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In quantum mechanics, the uncertainty principle is stated in the following way: the position and
momentum of a particle cannot be measured simultaneously. To be able to talk about accuracy of
measurements, we need two concepts from Probability Theory: the expectation and the standard
deviation.

Let f be a measurable function such that |f |2 is a density probability function (
R |f(x)|2dx = 1).

The expectation is defined by hxi = E(|f |2) = R x|f(x)|2dx and the standard deviation is defined as

�

2
x

= V (|f |2) =
Z

(x� hxi)2|f(x)|2dx =

Z
(x2 � hxi2)|f(x)|2dx = inf

a

Z
(x� a)2|fx)|2dx

Then Heisenberg’s uncertainty principle can be mathematically expressed as �
x

· �
p

� ~
2 .

In this talk, as it is customary in Harmonic Analysis, the constant is normalised so that ~ = 1
2⇡ .

Theorem 2.1. (Heisenberg’s uncertainty principle I) Let f be a measurable function with kfk2 = 1.
Then V (|f |2)V (| bf |2) � (4⇡)�2. In fact, for all x0, ⇠0 2 R,

Z
(x� x0)

2|f(x)|2dx
Z

(⇠ � ⇠0)
2| bf(⇠)|2d⇠ � (4⇡)�2

Proof. Changing f by T�x0M�⇠0f , the inequality is proved once we show
Z

x

2|f(x)|2dx
Z
⇠

2| bf(⇠)|2d⇠ � (4⇡)�2
.

Using integration by parts, we have

1 =

Z
|f(x)|2dx =

Z
d

dx

(x)f(x)f(x)dx = �
Z

x

d

dx

(ff)(x)dx

= �
Z

x(f 0(x)f(x) + f(x)f 0(x))dx = �2Re
⇣Z

xf(x)f 0(x)dx
⌘

Now, by Cauchy-Schwarz inequality

1  2

Z
|x||f(x)||f 0(x)|dx  2

⇣Z
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2|f(x)|2dx
⌘ 1

2
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|f 0(⇠)|2d⇠
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Using bf 0(⇠) = 2⇡i⇠f̂(⇠) and Parseval’s identity, we have
⇣Z

|f 0(x)|2dx
⌘ 1

2
= kf 0k2 = kbf 0k2 = k2⇡i · bfk2 = 2⇡

⇣Z
⇠

2| bf(⇠)|2d⇠
⌘ 1

2

and so,

1  4⇡
⇣Z

x

2|f(x)|2dx
⌘ 1

2
⇣Z

⇠

2| bf(⇠)|2d⇠
⌘ 1

2

⇤
To interpret this theorem, we assume that the position of a particle is given by the density probability

function |f |2: the probability that the particle is located in the interval (a, b) is
R
b

a

|f(x)|2dx. Then the
expected value hxi = E(|f |2) is the averaged position (an observable, which can be actually measured)
while the standard deviation �

x

= V (|f |2)1/2 measures the average deviation from the expected value,
that is, a measurement of the uncertainty attached to the expectation.

Moreover, we also assume that the probability that the momentum of a particle belongs to the
interval (a, b) is

R
b

a

| bf(⇠)|2d⇠. The rationale behind this assumption is the duality between the position

operator xf(x) and the derivative operator (2⇡i)�1
f

0(x), as we explain. While hxi = R xf(x)f(x)dx,
we have

hpi = 1

2⇡i

Z
f

0(x)f(x)dx =
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2⇡i

Z
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0(⇠) bf(⇠)d⇠ =
Z
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b
f(⇠) bf(⇠)d⇠ =
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⇠| bf(⇠)|2d⇠



and so, | bf(⇠)|2 is the probability density for the momentum. Then, while �2
x

=
R
x

2|f(x)|2dx, we have

�

2
p

=

Z
⇠

2| bf(⇠)|2dx =
1

2⇡i

Z
|f 0(x)|2dx

The result does not imply that a particle does not have well-defined position and momentum.
At any time, any of these quantities can be measured with arbitrary precision with the appropriate
approximation of the identity. Using f(x) = ✏

�1
'(✏x) we can determine the position but it produces

uncertainty in the momentum. Using f(x) = '̃(✏�1
x) instead, allows to determine the momentum

but implies lack of certainty for the position. That is, measuring one of the variables interferes with
the measurement of the other one.

3. The Uncertainty Principle in Operator Theory

We define the operators Xf(x) = xf(x) and Df(x) = 1
2⇡if

0(x). From the preceding discussion we

have dDf = X

b
f, that is, X multiplies by the physical variable, while D multiplies by the frequency

variable. The quantity

�

x

=
kXfk2
kfk2 =

✓R
x

2|f(x)|2dtR |f(x)|2dt
◆ 1

2

is a measure of the average value of |t|, or in other words the average deviation of the physical variable
x from the origin. Similarly

�

p

=
kDfk2
kfk2 =

kdDfk2
k bfk2

=

 R
⇠

2| bf(⇠)|2d⌧
R | bf(⇠)|2d⌧

! 1
2

measures the average deviation of the frequency variable ⇠ from the origin. Note that X and D are
both self-adjoint operators and that they do not commute: on the one side XDf(x) = xDf(x) while,
on the other side, DXf(x) = D(xf(x)) = 1

2⇡if(x) + xDf(x). Then,

[X,D]f = XDf �DXf = � 1

2⇡i
f

Proposition 3.1. (Heisenberg uncertainty principle II) We have

kXfk2
kfk2

kDfk2
kfk2 � 1

4⇡

Proof. We consider the quantity k(aX + ibD)fk2, with a, b real numbers to be chosen later. Clearly
this quantity is non-negative. Moreover,

0  k(aX + ibD)fk2 = h(aX + ibD)f, (aX + ibD)fi
= a

2hXf,Xfi+ b

2hDf,Dfi+ iabhXf,Dfi � iabhDf,Xfi
= a

2hXf,Xfi+ b

2hDf,Dfi+ iab (hDXf, fi � hXDf, fi)
= a

2kXfk22 + b

2kDfk22 � iabh[X,D]f, fi
= a

2kXfk22 + b

2kDfk22 �
ab

2⇡
kfk22.

Then we have
a

b

kXfk22 +
b

a

kDfk22 �
1

2⇡
kfk22.

Now, the function f(�) = �u

2 + �

�1
v

2 attains its minimum at � = v

u

(= a

b

), for which f( v
u

) = 2uv.
For that reason, we pick a = v = kDfk2 and b = u = kXfk2, and we thus have

2kXfk2kDfk2 � 1

2⇡
kfk22

⇤



The uncertainty principle also applies to other pairs of operators. For instance, the operators
energy and time: if time is measured with high precision, energy cannot be accurately measured. This
phenomenon implies that during a small interval of time, the principle of conservation of energy can
be violated. This property gives an explanation for the existence of virtual particles, which appear
spontaneously in the vacuum as a pair of particle and anti-particle to annihilate each other shortly
after. It also explains Hawking’s radiation of black holes and it ultimately provides a speculative
explanation for the origin of the Universe out of non-existence.

In the previous proof, we essentially used self-adjointness of the operators and their lack of com-
mutativity. So, the question is: do all self-adjoint operators that do not commute satisfy a similar
inequality? The answer is... almost.

Let A, B be two operators densely defined on a Hilbert space H with domains D(A) and D(B).
Then the domain of the product is D(AB) = {u 2 D(B) : Bu 2 D(A)} and similar for D(BA). The
commutator is defined on D([A,B]) = D(AB) \D(BA) ⇢ D(A) \D(B).

Proposition 3.2. Let A, B be self-adjoint operators and ↵,� 2 C. Then

k(A� ↵I)ukk(B � �I)uk � 1

2
|h[A,B]u, ui|

for all u 2 D([A,B]).

Proof. We denote Ã = A� ↵I and B̃ = B � �I. Since [A,B] = [A� ↵I, B � �I], we have,

|h[A,B]u, ui| = |h[Ã, B̃]u, ui| = |hÃB̃u, ui � hB̃Ãu, ui|
= |hB̃u, Ãui � hÃu, B̃ui| = 2| ImhÃu, B̃ui|  2kÃukkB̃uk

⇤
An important remark about this last result should be added. Its simple statement and easy proof

hide some subtleties that prevent answering previous question in the positive. Not all all self-adjoint
operators that do not commute satisfy the inequality. On the one hand, D([A,B]) could be non-dense
or could even be empty, although this is not typically the case. More importantly, [A,B] is not in
general a closed operator. Even denoting its closure by C = cl [A,B], it turns out that the inequality

kAukkBuk � 1

2
|hCu, ui|

for all u 2 D(A)\D(B)\D(C) is false in general. For that reason, refinements of this result are still
a subject of research in Operator Theory.

4. Bases of L

2

The uncertainty principle needs to be taken into account (consciously or unconscioulsy) when con-
structing bases or frames for L2. The idea is the following one: suppose a function f is concentrated
on an interval I while bf is concentrated on an interval I 0. In that case, we can say that f is represented
by the rectangle I⇥I

0. Then, by the uncertainty principle, we must have |I||I 0| � 1. This way, in order
to construct a complete system of functions for L2, ( 

j,k

)
j,k

, such that each function is represented by
a rectangle I

j

⇥ I

k

, by the uncertainty principle, we need to guarantee first that |I
j

||I
k

| � 1. This is
the case of the Gabor system

�

j,k

(x) = '(x� j)e2⇡ikx = T
j

M
k

'(x)

and the wavelet system
 

j,k

(x) = 2�k/2
'(2�k

x� j) = T
j2kD2k,2'(x)
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5. Other forms of the uncertainty principle

The following results are other di↵erent ways of formulating the uncertainty principle.

Theorem 5.1. (Hardy’s uncertainty principle) Let a, b > 0. Let f such that |f(x)|  Ce

�a⇡x

2
and

| bf(⇠)|  Ce

�b⇡⇠

2
for some C > 0. If ab > 1, then f ⌘ 0. If ab = 1, then f(x) = Ae

�a⇡x

2
.

Theorem 5.2. (Beurling’s uncertainty principle) If
Z Z

|f(x)|| bf(⇠)|e�a⇡x⇠

dxd⇠ < 1
then f ⌘ 0.

Theorem 5.3. (Amrein-Berthier’s uncertainty principle) There is C > 0 such that for all A,B ⇢ R
of finite measure and all f 2 L

2,

kfk2  Ce

C|A||B|
⇣Z

R\A
|f(x)|2dx+

Z

R\B
| bf(⇠)|2d⇠

⌘

In particular, if both f and bf are supported on sets of finite measure, then f ⌘ 0.

Theorem 5.4. (Poisson Summation Formula) Let f be an integrable function. Then
X

k2Z
f(x+ k) =

X

k2Z

b
f(k)e2⇡ikx

Theorem 5.5. (Bernstein’s Theorem) Assume that f 2 L

2 and bf is supported in D(0, R). Then f is
C

1 and the following inequalities hold:

(1) For any ↵ and 1  p  1, kD↵

fk
p

 (2⇡R)|↵|kfk
p

(2) For any 1  p  q  1, kfk
q

 CR

1
p�

1
q kfk

p

Theorem 5.6. (Paley-Wiener’s Theorem) Let f 2 C

1
0 (R), and suppose bf(⇠) = 0 for |⇠| > R. Then

f can be extended to an entire function on C with the following decay estimate

|f(z)|  C

N

(1 + |z|)Ne

R |Imz|

for any N 2 Z+.

Theorem 5.7. (Montgomery’s Uncertainty Principle) Let f : Z ! C be a finitely supported function
which, for each prime p, avoids !(p) residue classes modulo p for some 0  !(p) < p. Then for each
natural number q, X

1  a  q
(a, p) = 1

| bf(⇠ + a

q

)|2 � C

q

| bf(⇠)|2

where C

q

= µ(q)2
Q

p|q
!(q)

p�!(p) and µ is the Mobius function.

The result means that the more classes a function excludes, the more Fourier energy has to disperse
along multiples of 1/p. This is used to bound the measure of sets that avoid many module classes and
to show that certain sets must contain arithmetic progression of certain lengths.


