ERRATA for T. Shifrin's Multivariable Mathematics: Linear Algebra, Multivariable Calculus, and Manifolds

All of these except those marked with (\star) have been corrected in the second printing (June, 2017).

(\star) p. 41, Exercise 17b. The exponent should be k, an arbitrary positive integer.
p. 47, line 11. In the rightmost determinant, the first entry of the second column should be z_{1}.
${ }^{(\star)}$ p. 66, Example 1c. The rectangle, as given, may in fact not be contained in S, as the lower edge or left edge may go out of the first quadrant. Let's choose $\tilde{\delta}=\min (\delta, a, b)$ to be safe.
p. 79, Exercise 4. x should be \mathbf{x} throughout.
p. 86, Exercise 12b. Here $\mathbf{f}: \mathcal{M}_{n \times n} \rightarrow \mathbb{R}$.
p. 91, Example 5. On the second line it should be $\mathbf{f :} \mathbb{R}^{2}-\{y=0\} \rightarrow \mathbb{R}^{2}$.
p. 92, Example 7. The reference should be to Example 3 of Chapter 2, Section 3.
p. 93, Proposition 2.4, ff. Standard terminology is that a function f is \mathcal{C}^{1} if f and its partial derivatives are continuous. Note that in the proof of the Proposition, since the partial derivatives exist, we get continuity of f along horizontal and vertical lines, which is all we need to apply the Mean Value Theorem. Thus, the Proposition is correct as stated.
p. 103, Exercise 6. The symbol for liter (1) looks too much like a 1. For clarity, it would help to change these to ℓ.
p. 103, Exercise 11. Prove that a differentiable function f is homogeneous .
(\star) p. 121, line -5. $r(b+k)-r(b)$.
p. 145, Exercise 13. In (b) and (d) the vectors \mathbf{b} and \mathbf{b}_{i} should be nonzero.
p. 155, Exercise 1. ...find a product of elementary matrices $E=\cdots E_{2} E_{1}$ so that $E A$ is in echelon form.
p. 185, Exercise 6a. nonzero matrix A.
(\star) p. 199, Theorem 1.2. X should be nonempty.
(ぇ) p. 201, Exercise 8. S should be nonempty.
pp. 202, Lemma 2.1. $D f(\mathbf{a})=O \ldots$
(\star) p. 203, lines 8, 13. $D f(\mathbf{a})=0$.
p. 203, Definition. A critical point \mathbf{a} is a saddle point if for every $\delta>0$, there are points $\mathbf{x}, \mathbf{y} \in B(\mathbf{a}, \delta)$ with $f(\mathbf{x})<f(\mathbf{a})$ and $f(\mathbf{y})>f(\mathbf{a})$.
p. 207, Exercise 2. The opposite corner should also be in the first octant, i.e., should have x, y, and z all positive.
p. 225, Exercise 33. ... marginal productivity per dollar ...
p. 225, Exercise 34. On line 2, $\operatorname{Dg}(\mathbf{a}) \neq \mathrm{O}$.
(*) p. 233, Lemma 5.1. Suppose $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a basis for V. Then the equation

$$
\mathbf{x}=\sum \operatorname{proj}_{\mathbf{v}_{i}} \mathbf{x}=\ldots
$$

holds for all $\mathbf{x} \in V$ if and only if \ldots
p. 250, footnote. Kantorovich.
(\star) p. 252, proof of Theorem 2.1. Add to the end of line 2 of the proof: "and since the norm of a linear map is a continuous function (See Exercise 5, p. 201)" ...
p. 256, line 6. Z is a neighborhood of $\left[\begin{array}{c}\mathbf{x}_{0} \\ \mathbf{0}\end{array}\right]$. In Figure $2.4, Z$ should be slid to the right, containing
$\times\{\mathbf{0}\}$. (ぇ) p. 258, line 3. Delete the first "as."
p. 261, Exercise 13a. Suppose $f\binom{\mathbf{x}_{0}}{t_{0}}=\frac{\partial f}{\partial t}\binom{\mathbf{x}_{0}}{t_{0}}=0$ and the matrix \ldots is nonsingular. Show that for some $\delta>0$, there is a \mathcal{C}^{1} curve $\mathbf{g}:\left(t_{0}-\delta, t_{0}+\delta\right) \rightarrow \mathbb{R}^{2}$ with $\mathbf{g}\left(t_{0}\right)=\mathbf{x}_{0}$ so that \ldots
p. 271, Proposition 1.6. R^{\prime} and $R^{\prime \prime}$ should overlap in only a "face," not in a proper subrectangle.
p. 272, line 5. If X contains a frontier point of R, we cannot ensure this; however, the closure of Y will still be disjoint from X and the argument continues fine.
p. 275, Exercise 10. $R \subset \mathbb{R}^{n}$; line $\mathbf{5} \ldots$ requires at most volume $2 A \delta$.
p. 276, Exercise 15b. $D=\{\mathbf{x} \in R: f$ is discontinuous at $\mathbf{x}\}$.
p. 316, line -3. Proof of Proposition 5.14.
p. 322, Exercise 10d. The problem should ask only for an example when A and C do not commute. In fact, using the continuity of det, the astute reader should be able to check that the result of part c does hold whenever A and C commute.
(\star) p. 326, Proof of Theorem 6.4. In the proof of Theorem 6.4, the reduction to a rectangle is not valid. We have to cover Ω with a union R of rectangles (with rational sidelengths) contained in U. This can then be partitioned into cubes and the proof proceeds.
p. 328, lines 13-15. In the long inequality we should have $\varepsilon \operatorname{vol}(R)(1+M n)$ and $\varepsilon \operatorname{vol}(R)\left(2^{n}+2^{n-1} M n\right)$. Then let $\beta=\operatorname{vol}(R)\left(2^{n}+2^{n-1} M n\right)$.
p. 329, line 1. Section 3, not section 4.
(\star) $\mathbf{p} .345$, lines 4-5. We need the remark here that $\mathbf{g}_{2}^{-1}{ }^{\circ} \mathbf{g}_{1}$ is smooth. This can be proved by what should be an exercise in §6.3: Using the notation of part $\mathbf{3}$ of the Definition on p .262 of a k-dimensional manifold, perhaps shrinking W, there is a smooth function $\mathbf{h}: W \rightarrow U$ whose restriction to $M \cap W$ is \mathbf{g}^{-1}. (Hint:

Without loss of generality, assume $\mathbf{g}\left(\mathbf{u}_{0}\right)=\mathbf{p}$ and write $\mathbf{g}(\mathbf{u})=\left[\begin{array}{l}\mathbf{g}_{1}(\mathbf{u}) \\ \mathbf{g}_{2}(\mathbf{u})\end{array}\right] \in \mathbb{R}^{k} \times \mathbb{R}^{n-k}$, where $D \mathbf{g}_{1}\left(\mathbf{u}_{0}\right)$ is nonsingular.)
p. 352, add to Remark: Also, note that we are using the notation $\oint_{C} \omega$ to denote the integral of ω around the closed curve (or loop) C. This notation is prevalent in physics texts.
p. 355, lines $-\mathbf{2}$ and -1 . a should be a.
p. 368-369, Example 2. In parts a and $\mathrm{c}, ~ D=(0,1) \times(0,2 \pi)$.
p. 380, line 8. Add: "parametrization $\mathbf{g}: U \rightarrow \mathbb{R}^{n}$ with $U \subset \mathbb{R}_{+}^{k}$ and"
p. 381, last line. $\mathbf{g}_{i}: B(\mathbf{0}, 2) \rightarrow V_{i}$, and $V_{i}^{\prime}=\mathbf{g}_{i}(B(\mathbf{0}, 1)) \subset V_{i}$ cover M.
p. 382, line 12. Delete the last equality in the displayed string of equations.
p. 410, lines 4 and 5. All the integrals should be over $S^{2 m}$.
p. 411, Exercise 9. Suppose $U \subset \mathbb{C}$ is open, $f, g: U \rightarrow \mathbb{C}$ are smooth, and $C \subset U$ is a closed curve. Suppose that on C we have $f, g \neq 0$ and $|g-f|<|f|$. Prove that \ldots
(\star) p. 426, footnote. The fastidious reader should instead observe that this follows directly from Proposition 5.18 of Chapter 7.
p. 433, line 5 . The 22 entry of $B-I$ should be 2 .
p. 444, Example 7, line -3. $\dot{x}_{1}=-x_{2}$.
p. 445, Example 8. Delete the first "the" in the first line.
(\star) p. 454, Exercise 17c. The result of Exercise 9.2 .22 is needed to provide the suggested continuity argument, as well. We should insert a remark that the result of c holds even when the eigenvalues are complex. This is needed for \#19.
p. 457, lines 11-12. "Let $W=\left(\operatorname{Span}\left(\mathbf{v}_{1}\right)\right)^{\perp} \subset \mathbb{R}^{n}$ " should precede the second sentence of the paragraph.
p. 476, \#2.2.13. min should be max.
p. 480, \#4.5.11a. $D F(\mathbf{x})$ has rank 2 at every point $\mathbf{x} \in M$: Either $x_{1}=x_{2}$ and $x_{3}=-x_{4}$ or $x_{1}=-x_{2}$ and $x_{3}=x_{4}$, so $x_{1} x_{2}$ and $x_{3} x_{4}$ have opposite signs unless they are both 0 .
p. 482, \#6.2.1: $D \mathbf{g}\left(\mathbf{f}\left(\mathbf{x}_{0}\right)\right)=\frac{1}{2\left(x_{0}^{2}+y_{0}^{2}\right)} \ldots$
p. 483, \#7.3.12: The picture is not correct.

