
Real Analysis Qualifying Examination

Fall 2023

The five problems on this exam have equal weighting. To receive full credit give complete justification for all
assertions by either citing known theorems or giving arguments from first principles.

1. Let fn(x) =
nx2

n3 + x3
.

(a) Prove that fn converge uniformly to 0 on [0,M ] for any M > 0, but does not converge uniformly
to 0 on [0,1).

(b) Prove that the series
1P

n=1
fn(x) defines a continuous function on [0,1).

2. Let (X,A) be a measurable space and µ is a non-negative set function on A that is finitely additive
with µ(;) = 0. Recall that such a set function is said to be continuous from below if

µ
⇣[

j

Aj

⌘
= lim

j!1
µ(Aj) whenever Aj is an increasing sequence of sets in A.

Prove that
µ is a measure () µ is continuous from below.

3. Prove that

1� x2

2
 cosx  e�x2/2

for all |x|  1 and conclude from this that

lim
n!1

r
n

2⇡

Z

|x|1
(cosx)n dx = 1.

Hint: You may use without proof that
R1
�1 e�⇡x2

dx = 1.

4. Let a, b > 0. Prove that
Z

[0,1]⇥[0,1]

1

xa + yb
dm2(x, y) < 1 () 1

a
+

1

b
> 1

where m2 denotes Lebesgue measure on R2.

Hint: One possible approach would be to consider separately the regions where xa  yb and xa > yb.

5. Let fk ! f a.e. on R with sup
k

kfkkL2(R) < 1. Prove that f 2 L2(R) and that

lim
k!1

Z

R
fkg =

Z

R
fg

for all g 2 L2(R).
Hint: First consider functions g supported on sets of finite measure and use Egorov’s Theorem.
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