QUALIFYING EXAMINATION IN COMPLEX ANALYSIS

August 15, 2007 12:00-2:00 pm

As usual, $\mathbb D$ denotes the (open) unit disk and $\mathbb H$ the upper half-plane. Provide justifications as appropriate.

1. (20 points) Use methods of complex analysis to evaluate

$$\int_0^\infty \frac{\sqrt{x}}{1+x^2} \, dx \, .$$

- 2. (10 points) Let $f(z) = \frac{z+2}{z^2+z}$. Give the Laurent expansion of f that converges on
 - a. $\{z: 0 < |z| < 1\}$
 - b. $\{z: 1 < |z+1|\}$
- 3. (10 points) Let $n \in \mathbb{N}$. Prove that the equation $e^z = az^n$ has n solutions in \mathbb{D} if |a| > e and none if |a| < 1/e.
- 4. (25 points)
 - a. (5 pts) State the Schwarz reflection principle (the "standard" version involving reflection across the real axis).
 - b. (10 pts) Give (with justification) a linear fractional transformation T mapping $\mathbb D$ to $\mathbb H$. Let $g(z)=\overline z$; show that $(T^{-1}\circ g\circ T)(z)=1/\overline z$.
 - c. (10 pts) Suppose f is holomorphic on \mathbb{D} , continuous on $\overline{\mathbb{D}}$, and real on the unit circle C. Prove that f must be constant.
- 5. (20 points) Suppose $\{f_n\}$ is a sequence of analytic functions on $\mathbb D$ that converges uniformly on compact subsets to f. Prove carefully that f is analytic on $\mathbb D$ and that

if
$$f_n(z) = \sum_{j=0}^{\infty} a_j^{(n)} z^j$$
, then $f(z) = \sum_{j=0}^{\infty} a_j z^j$,

where $a_j = \lim_{n \to \infty} a_j^{(n)}$ for all $j = 0, 1, 2, \dots$

6. (15 points) Suppose f is holomorphic on a region Ω , $a \in \Omega$, and $f'(a) \neq 0$. Being sure to check all hypotheses and state the theorem carefully, apply the (real) inverse function theorem to prove that f has a holomorphic local inverse on a neighborhood of b = f(a). (Hint: You will want to use some form of the Cauchy Riemann equations at least once.)