Complex Analysis Qualifying Examination

Spring 2009

Show your work and carefully justify/prove your assertions.

All problems are of equal weight. Please arrange your solutions in numerical order even if you do not solve them in that order.

- 1. Evaluate $\int_0^\infty \frac{\sin x}{x} dx$ using complex analysis (other methods will not count).
- 2. Consider the transformation $w=z+\frac{1}{z}$ where w=u+iv and z=x+iy. Let Ω be the domain consisting of all the points in the upper half plane y>0 which are exterior to the circle |z|=1.
 - (a) Show that the image of Ω is the entire half plane v > 0.
 - (b) What is the image of the boundary of Ω ?
- 3. (a) Let $u(x,y) = y^3 3x^2y$. Find its harmonic conjugate v(x,y).
 - (b) Let Ω be a connected domain in the complex plane and let u be harmonic in Ω . Prove that u satisfies the *mean value property* in Ω . That is, for each a in Ω there exists $r_0 > 0$ such that

$$u(a) = \frac{1}{2\pi} \int_0^{2\pi} u(a + re^{it}) dt$$
 for $0 < r \le r_0$.

4. How many roots does the equation

$$z^7 - 4z^3 + z - 1 = 0$$

have in the open disk |z| < 1?

- 5. Describe the set $\operatorname{Aut}(\mathbb{C}_{\infty})$ of analytic isomorphisms on \mathbb{C}_{∞} explicitly, where $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$ is the Riemann sphere. Here a function f that has a pole at z_0 is considered to be analytic at z_0 as a mapping that sends z_0 to the point ∞ on the Riemann sphere \mathbb{C}_{∞} .
- 6. (a) Show that $\frac{\pi^2}{\sin^2 \pi z}$ and $g(z) = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}$ have the same principle part at each integer point.
 - (b) Conclude that $\frac{\pi^2}{\sin^2 \pi z} = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}$.