QUALIFYING EXAM IN COMPLEX ANALYSIS, SPRING 2017

Test-taking tips:

- 1. It is to your advantage to begin work each problem, even if you don't see how to finish it.
- 2. Problems will be equally weighted.
- 3. The more elementary your arguments, the better.
- 1. Let $f: \mathbb{C} \to \mathbb{C}$ be given by $f(x+iy) = x^2 y^2 + 3y + i(xy-4y)$. Find all points in \mathbb{C} at which f is complex differentiable.
- 2. Show that there is a holomorphic function w = f(z) on the open set |z| > 2, such that $w^2 = z^2 1$.
- 3. Exhibit a sequence of explicit conformal mappings, the composite of which gives a one-to-one conformal map from the region

$$R = \{z : |z| < 2 \text{ and } |z - 1| > 1\}$$

onto the upper half plane.

- 4. Let $U \subset \mathbb{C}$ be the punctured unit disk, 0 < |z| < 1, and let V be the open annulus 1/2 < |z| < 1.
- i) Prove that there is a smooth bijection $f:U\to V$ with a smooth inverse. (One way to do this is to write one down.)
- ii) Prove however that no such function f is conformal.
- 5. Compute by residues: $\int_0^\infty \frac{\sin(x)}{x(x^2+1)} dx$
- 6. Show that the equation $\sin(z) = e^{\alpha}z^3$, for $\alpha > 1$ has exactly three solutions inside the unit disk.
- 7. Describe all entire functions f(z) such that

$$|f(z)| \le |\sin(z)|$$
 for all z.